What are all the uses of an underscore in Scala?

I've taken a look at the list of surveys taken on scala-lang.org and noticed a curious question: "Can you name all the uses of “_”?". Can you? If yes, please do so here. Explanatory examples are appreciated.


The ones I can think of are

Existential types

def foo(l: List[Option[_]]) = ...

Higher kinded type parameters

case class A[K[_],T](a: K[T])

Ignored variables

val _ = 5

Ignored parameters

List(1, 2, 3) foreach { _ => println("Hi") }

Ignored names of self types

trait MySeq { _: Seq[_] => }

Wildcard patterns

Some(5) match { case Some(_) => println("Yes") }

Wildcard patterns in interpolations

"abc" match { case s"a$_c" => }

Sequence wildcard in patterns

C(1, 2, 3) match { case C(vs @ _*) => vs.foreach(f(_)) }

Wildcard imports

import java.util._

Hiding imports

import java.util.{ArrayList => _, _}

Joining letters to operators

def bang_!(x: Int) = 5

Assignment operators

def foo_=(x: Int) { ... }

Placeholder syntax

List(1, 2, 3) map (_ + 2)

Method values

List(1, 2, 3) foreach println _

Converting call-by-name parameters to functions

def toFunction(callByName: => Int): () => Int = callByName _

Default initializer

var x: String = _   // unloved syntax may be eliminated

There may be others I have forgotten!


Example showing why foo(_) and foo _ are different:

This example comes from 0__:

trait PlaceholderExample {
  def process[A](f: A => Unit)

  val set: Set[_ => Unit]

  set.foreach(process _) // Error 
  set.foreach(process(_)) // No Error
}

In the first case, process _ represents a method; Scala takes the polymorphic method and attempts to make it monomorphic by filling in the type parameter, but realizes that there is no type that can be filled in for A that will give the type (_ => Unit) => ? (Existential _ is not a type).

In the second case, process(_) is a lambda; when writing a lambda with no explicit argument type, Scala infers the type from the argument that foreach expects, and _ => Unit is a type (whereas just plain _ isn't), so it can be substituted and inferred.

This may well be the trickiest gotcha in Scala I have ever encountered.

Note that this example compiles in 2.13. Ignore it like it was assigned to underscore.


From (my entry) in the FAQ, which I certainly do not guarantee to be complete (I added two entries just two days ago):

import scala._    // Wild card -- all of Scala is imported
import scala.{ Predef => _, _ } // Exception, everything except Predef
def f[M[_]]       // Higher kinded type parameter
def f(m: M[_])    // Existential type
_ + _             // Anonymous function placeholder parameter
m _               // Eta expansion of method into method value
m(_)              // Partial function application
_ => 5            // Discarded parameter
case _ =>         // Wild card pattern -- matches anything
val (a, _) = (1, 2) // same thing
for (_ <- 1 to 10)  // same thing
f(xs: _*)         // Sequence xs is passed as multiple parameters to f(ys: T*)
case Seq(xs @ _*) // Identifier xs is bound to the whole matched sequence
var i: Int = _    // Initialization to the default value
def abc_<>!       // An underscore must separate alphanumerics from symbols on identifiers
t._2              // Part of a method name, such as tuple getters
1_000_000         // Numeric literal separator (Scala 2.13+)

This is also part of this question.


An excellent explanation of the uses of the underscore is Scala _ [underscore] magic.

Examples:

 def matchTest(x: Int): String = x match {
     case 1 => "one"
     case 2 => "two"
     case _ => "anything other than one and two"
 }

 expr match {
     case List(1,_,_) => " a list with three element and the first element is 1"
     case List(_*)  => " a list with zero or more elements "
     case Map[_,_] => " matches a map with any key type and any value type "
     case _ =>
 }

 List(1,2,3,4,5).foreach(print(_))
 // Doing the same without underscore: 
 List(1,2,3,4,5).foreach( a => print(a))

In Scala, _ acts similar to * in Java while importing packages.

// Imports all the classes in the package matching
import scala.util.matching._

// Imports all the members of the object Fun (static import in Java).
import com.test.Fun._

// Imports all the members of the object Fun but renames Foo to Bar
import com.test.Fun.{ Foo => Bar , _ }

// Imports all the members except Foo. To exclude a member rename it to _
import com.test.Fun.{ Foo => _ , _ }

In Scala, a getter and setter will be implicitly defined for all non-private vars in a object. The getter name is same as the variable name and _= is added for the setter name.

class Test {
    private var a = 0
    def age = a
    def age_=(n:Int) = {
            require(n>0)
            a = n
    }
}

Usage:

val t = new Test
t.age = 5
println(t.age)

If you try to assign a function to a new variable, the function will be invoked and the result will be assigned to the variable. This confusion occurs due to the optional braces for method invocation. We should use _ after the function name to assign it to another variable.

class Test {
    def fun = {
        // Some code
    }
    val funLike = fun _
}

There is one usage I can see everyone here seems to have forgotten to list...

Rather than doing this:

List("foo", "bar", "baz").map(n => n.toUpperCase())

You could can simply do this:

List("foo", "bar", "baz").map(_.toUpperCase())