What are the advantages of boost::noncopyable

Solution 1:

I see no documentation benefit:

#include <boost/noncopyable.hpp>

struct A
    : private boost::noncopyable
{
};

vs:

struct A
{
     A(const A&) = delete;
     A& operator=(const A&) = delete;
};

When you add move-only types, I even see the documentation as misleading. The following two examples are not copyable, though they are movable:

#include <boost/noncopyable.hpp>

struct A
    : private boost::noncopyable
{
    A(A&&) = default;
    A& operator=(A&&) = default;
};

vs:

struct A
{
    A(A&&) = default;
    A& operator=(A&&) = default;
};

Under multiple inheritance, there can even be a space penalty:

#include <boost/noncopyable.hpp>

struct A
    : private boost::noncopyable
{
};

struct B
    : public A
{
    B();
    B(const B&);
    B& operator=(const B&);
};

struct C
    : public A
{
};

struct D
    : public B,
      public C,
      private boost::noncopyable
{
};

#include <iostream>

int main()
{
    std::cout << sizeof(D) << '\n';
}

For me this prints out:

3

But this, which I believe to have superior documentation:

struct A
{
    A(const A&) = delete;
    A& operator=(const A&) = delete;
};

struct B
    : public A
{
    B();
    B(const B&);
    B& operator=(const B&);
};

struct C
    : public A
{
    C(const C&) = delete;
    C& operator=(const C&) = delete;
};

struct D
    : public B,
      public C
{
    D(const D&) = delete;
    D& operator=(const D&) = delete;
};

#include <iostream>

int main()
{
    std::cout << sizeof(D) << '\n';
}

Outputs:

2

I find it much easier to declare my copy operations than to reason whether or not I'm deriving from boost::non_copyable multiple times and if that is going to cost me. Especially if I'm not the author of the complete inheritance hierarchy.

Solution 2:

Summarizing what others have said:

Advantages of boost::noncopyable over private copy methods:

  1. It is more explicit and descriptive in the intent. Using private copy functions is an idiom that takes longer to spot than noncopyable.
  2. It is less code / less typing / less clutter / less room for error (the easiest would be accidentally providing an implementation).
  3. It embeds meaning right in the type's metadata, similar to a C# attribute. You can now write a function which accepts only objects which are noncopyable.
  4. It potentially catches errors earlier in the build process. The error will be presented at compile-time rather than link-time, in the case that the class itself or friends of the class are doing the erroneous copying.
  5. (almost the same as #4) Prevents the class itself or friends of the class from calling the private copy methods.

Advantages of private copy methods over boost::noncopyable:

  1. No boost dependency

Solution 3:

It makes the intent explicit and clear, otherwise one has to see the definition of the class,and search for the declaration related to copy-semantic, and then look for the access-specifier in which it is declared, in order to determine whether the class is noncopyable or not. Other way to discover it by writing code that requires copy-semantic enabled and see the compilation error.

Solution 4:

  1. The intent of boost::noncopyable is clearer.
  2. Boost::noncopyable prevents the classes methods from accidentally using the private copy constructor.
  3. Less code with boost::noncopyable.