Random number generator only generating one random number

Every time you do new Random() it is initialized using the clock. This means that in a tight loop you get the same value lots of times. You should keep a single Random instance and keep using Next on the same instance.

//Function to get a random number 
private static readonly Random random = new Random(); 
private static readonly object syncLock = new object(); 
public static int RandomNumber(int min, int max)
{
    lock(syncLock) { // synchronize
        return random.Next(min, max);
    }
}

Edit (see comments): why do we need a lock here?

Basically, Next is going to change the internal state of the Random instance. If we do that at the same time from multiple threads, you could argue "we've just made the outcome even more random", but what we are actually doing is potentially breaking the internal implementation, and we could also start getting the same numbers from different threads, which might be a problem - and might not. The guarantee of what happens internally is the bigger issue, though; since Random does not make any guarantees of thread-safety. Thus there are two valid approaches:

  • Synchronize so that we don't access it at the same time from different threads
  • Use different Random instances per thread

Either can be fine; but mutexing a single instance from multiple callers at the same time is just asking for trouble.

The lock achieves the first (and simpler) of these approaches; however, another approach might be:

private static readonly ThreadLocal<Random> appRandom
     = new ThreadLocal<Random>(() => new Random());

this is then per-thread, so you don't need to synchronize.


For ease of re-use throughout your application a static class may help.

public static class StaticRandom
{
    private static int seed;

    private static ThreadLocal<Random> threadLocal = new ThreadLocal<Random>
        (() => new Random(Interlocked.Increment(ref seed)));

    static StaticRandom()
    {
        seed = Environment.TickCount;
    }

    public static Random Instance { get { return threadLocal.Value; } }
}

You can use then use static random instance with code such as

StaticRandom.Instance.Next(1, 100);

Mark's solution can be quite expensive since it needs to synchronize everytime.

We can get around the need for synchronization by using the thread-specific storage pattern:


public class RandomNumber : IRandomNumber
{
    private static readonly Random Global = new Random();
    [ThreadStatic] private static Random _local;

    public int Next(int max)
    {
        var localBuffer = _local;
        if (localBuffer == null) 
        {
            int seed;
            lock(Global) seed = Global.Next();
            localBuffer = new Random(seed);
            _local = localBuffer;
        }
        return localBuffer.Next(max);
    }
}

Measure the two implementations and you should see a significant difference.


My answer from here:

Just reiterating the right solution:

namespace mySpace
{
    public static class Util
    {
        private static rnd = new Random();
        public static int GetRandom()
        {
            return rnd.Next();
        }
    }
}

So you can call:

var i = Util.GetRandom();

all throughout.

If you strictly need a true stateless static method to generate random numbers, you can rely on a Guid.

public static class Util
{
    public static int GetRandom()
    {
        return Guid.NewGuid().GetHashCode();
    }
}

It's going to be a wee bit slower, but can be much more random than Random.Next, at least from my experience.

But not:

new Random(Guid.NewGuid().GetHashCode()).Next();

The unnecessary object creation is going to make it slower especially under a loop.

And never:

new Random().Next();

Not only it's slower (inside a loop), its randomness is... well not really good according to me..


I would rather use the following class to generate random numbers:

byte[] random;
System.Security.Cryptography.RNGCryptoServiceProvider prov = new System.Security.Cryptography.RNGCryptoServiceProvider();
prov.GetBytes(random);