Generalized Cross Product

Solution 1:

If $x_1,\dotsc,x_{n-1} \in \mathbb{R}^n$, one defines $x_1 \times \cdots \times x_{n-1} \in \mathbb{R}^n$ to be the unique vector such that $$ \forall y \in \mathbb{R}^n, \quad \langle x_1 \times \cdots \times x_{n-1},y \rangle = \operatorname{det}(x_1,\dotsc,x_{n-1},y), $$ where the determinant is being viewed as a function of the rows or columns of the usual matrix argument, i.e., as the unique antisymmetric $n$-form $\operatorname{det} : \mathbb{R}^n \times \cdots \times \mathbb{R}^n \to \mathbb{R}$ such that $\det(e_1,\dotsc,e_n) = 1$ for $\{e_k\}$ the standard ordered basis of $\mathbb{R}^n$.

Now, suppose that $x_1,\dotsc,x_{n-1} \in \mathbb{R}^n$ are linearly independent, and hence span a hyperplane $H$ ($n-1$-dimensional subspace) in $\mathbb{R}^n$. Then, in particular, $x_1 \times \cdots \times x_{n-1} \neq 0$ is orthogonal to each $x_k$, and hence defines a non-zero normal vector to $H$; write $$x_1 \times \cdots \times x_{n-1} = \|x_1 \times \cdots \times x_{n-1}\|\hat{n}$$ for $\hat{n}$ the corresponding unit normal. Let $y \notin H$. Then $x_1,\dotsc,x_{n-1},y$ are linearly independent and span an $n$-dimensional parallelopiped $P$ with $n$-dimensional volume $$ |\operatorname{det}(x_1,\dotsc,x_{n-1},y)| = |\langle x_1 \times \cdots x_{n-1},y\rangle| = \|x_1 \times \cdots \times x_{n-1}\||\langle \hat{n},y\rangle|. $$ Now, with respect to the decomposition $\mathbb{R}^n = H^\perp \oplus H$, let $$ T = \begin{pmatrix} I_{H^\perp} & 0 \\ M & I_{H} \end{pmatrix} $$ for $M : H^\perp \to H$ given by $$M(c \hat{n}) = -c \langle \hat{n},y \rangle^{-1} P_H y = -c\langle \hat{n},y\rangle^{-1}(y-\langle\hat{n},y\rangle\hat{n}),$$ where $P_H(v)$ denotes the orthogonal projection of $v$ onto $H$. Then $T(P)$ is a $n$-dimensional parallelepiped with with vertices $Tx_1 = x_1,\dotsc,Tx_{n-1}=x_{n-1}$, and $$ Ty = \langle \hat{n},y \rangle \hat{n} = P_{H^\perp} y = y - P_H y, $$ with the same volume as $P$. On the one hand, since $Ty = y - P_H y$ for $P_H y \in H = \{x_1 \times \cdots \times x_{n-1}\}^\perp$, $$ \operatorname{Vol}_n(T(P)) = |\operatorname{det}(Tx_1,\dotsc,Tx_{n-1},Ty)|\\ = |\operatorname{det}(x_1,\dotsc,x_{n-1},y-P_H y)|\\ = |\operatorname{det}(x_1,\dotsc,x_{n-1},y)|\\ = \|x_1 \times \cdots \times x_{n-1}\||\langle \hat{n},y\rangle|. $$ On the other hand, since $Ty \in H^\perp$, $T(P)$ is an honest cylinder with height $\|Ty\| = |\langle \hat{n},y\rangle|$ and base the $(n-1)$-dimensional parallelopiped $R$ spanned by $x_1,\dotsc,x_{n-1}$, so that $$ \operatorname{Vol}_n(T(P)) = \operatorname{Vol}_{n-1}(R)|\langle \hat{n},y\rangle|. $$ Thus, $$ \operatorname{Vol}_{n-1}(R)|\langle \hat{n},y\rangle| = \operatorname{Vol}_n(T(P)) = \|x_1 \times \cdots \times x_{n-1}\||\langle \hat{n},y\rangle|, $$ so that $$ \operatorname{Vol}_{n-1}(R)| = \|x_1 \times \cdots \times x_{n-1}\|, $$ as required.


EDIT: Theoretical Addendum

Let's see what $\phi x_1 \times \cdots \times \phi x_n$ is in terms of $x_1 \times \cdots \times x_{n-1}$ for $\phi$ a linear transformation on $\mathbb{R}^n$.

Define a linear map $T : (\mathbb{R}^n)^{\otimes(n-1)} \to (\mathbb{R}^n)^\ast$ by $$ T : x_1 \otimes \cdots \otimes x_{n-1} \mapsto \operatorname{det}(x_1,\cdots,x_{n-1},\bullet), $$ so that if $S : \mathbb{R}^n \to (\mathbb{R}^n)^\ast$ is the isomorphism $v \mapsto \langle v,\bullet \rangle$, then $$ x_1 \times \cdots \times x_n = (S^{-1}T)(x_1 \otimes \cdots \otimes x_n). $$ Now, since the determinant is antisymmetric, so too is $T$, and hence $T$ descends to a linear map $T : \bigwedge^{n-1} \mathbb{R}^n \to (\mathbb{R}^n)^\ast$, $$ x_1 \wedge \cdots \wedge x_{n-1} \mapsto \operatorname{det}(x_1,\cdots,x_{n-1},\bullet); $$ indeed, if $\operatorname{Vol} = e_1 \wedge \cdots \wedge e_n$ for $\{e_k\}$ the standard ordered basis for $\mathbb{R}^n$, then for any $y \in \mathbb{R}^n$, $$ \langle x_1 \otimes \cdots \otimes x_{n-1},y \rangle \operatorname{Vol} = \operatorname{det}(x_1,\cdots,x_{n-1},y)\operatorname{Vol} = x_1 \wedge \cdots \wedge x_{n-1} \wedge y, $$ which, in fact, shows that $$ x_1 \times \cdots \times x_{n-1} = \ast (x_1 \wedge \cdots \wedge x_{n-1}), $$ where $\ast : \wedge^{n-1} \mathbb{R}^n \to \mathbb{R}^n$ is the relevant Hodge $\ast$-operator. Thus, a cross product is really an $(n-1)$-form in the orientation-dependent disguise given by the Hodge $\ast$-operator; in particular, it will really transform as an $(n-1)$-form, as we'll see now.

Now, let $\phi : \mathbb{R}^n \to \mathbb{R}^n$ be linear. Observe that the adjugate matrix $\operatorname{Adj}(\phi)$ of $\phi$ can be invariantly defined as the unique linear transformation $\operatorname{Adj}(\phi) : \mathbb{R}^n \to \mathbb{R}^n$ such that for any $\omega \in \bigwedge^{n-1} \mathbb{R}^n$ and $y \in \mathbb{R}^n$, $$ (\wedge^{n-1})\omega \wedge y = \omega \wedge \operatorname{Adj}(\phi) y, $$ e.g., in our case, $$ x_1 \wedge \cdots \wedge x_{n-1} \wedge \operatorname{Adj}(\phi) y = (\wedge^{n-1}\phi)(x_1 \wedge \cdots \wedge x_{n-1}) \wedge y = \phi x_1 \wedge \cdots \wedge \phi x_{n-1} \wedge y, $$ and that, as a matrix, $\operatorname{Adj}(\phi) = \operatorname{Cof}(\phi)^T$, where $\operatorname{Cof}(\phi)$ denotes the cofactor matrix of $\phi$. Then for any $y$, $$ \langle \phi x_1 \times \cdots \times \phi x_{n-1},y \rangle \operatorname{Vol} = \operatorname{det}(\phi x_1,\cdots,\phi x_{n-1},y)\operatorname{Vol}\\ = \phi x_1 \wedge \cdots \wedge \phi x_{n-1} \wedge y\\ = (\wedge^{n-1}\phi)(x_1 \wedge \cdots \wedge x_{n-1}) \wedge y\\ = (x_1 \wedge \cdots \wedge x_{n-1}) \wedge \operatorname{Adj}(\phi)y\\ = \langle x_1 \times \cdots \times x_{n-1},\operatorname{Adj}(\phi)y \rangle \operatorname{Vol}\\ = \langle \operatorname{Cof}(\phi)(x_1 \times \cdots \times x_{n-1}),y \rangle \operatorname{Vol}, $$ and hence, since $y$ was arbitrary, $$ \phi x_1 \times \cdots \times \phi x_{n-1} = \operatorname{Cof}(\phi)(x_1 \times \cdots \times x_{n-1}) = (\ast \circ \wedge^{n-1}\phi \circ \ast^{-1})(x_1 \times \cdots \times x_{n-1}), $$ in terms of the Hodge $\ast$-operation and the invariantly defined $\wedge^{n-1}\phi$.