Extract Year, Month, Day and Time [duplicate]

Solution 1:

Use the to_datetime function, specifying a format to match your data.

raw_data['Mycol'] =  pd.to_datetime(raw_data['Mycol'], format='%d%b%Y:%H:%M:%S.%f')

Solution 2:

If you have more than one column to be converted you can do the following:

df[["col1", "col2", "col3"]] = df[["col1", "col2", "col3"]].apply(pd.to_datetime)

Solution 3:

You can use the DataFrame method .apply() to operate on the values in Mycol:

>>> df = pd.DataFrame(['05SEP2014:00:00:00.000'],columns=['Mycol'])
>>> df
                    Mycol
0  05SEP2014:00:00:00.000
>>> import datetime as dt
>>> df['Mycol'] = df['Mycol'].apply(lambda x: 
                                    dt.datetime.strptime(x,'%d%b%Y:%H:%M:%S.%f'))
>>> df
       Mycol
0 2014-09-05

Solution 4:

Use the pandas to_datetime function to parse the column as DateTime. Also, by using infer_datetime_format=True, it will automatically detect the format and convert the mentioned column to DateTime.

import pandas as pd
raw_data['Mycol'] =  pd.to_datetime(raw_data['Mycol'], infer_datetime_format=True)

Solution 5:

raw_data['Mycol'] =  pd.to_datetime(raw_data['Mycol'], format='%d%b%Y:%H:%M:%S.%f')

works, however it results in a Python warning of A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

I would guess this is due to some chaining indexing.