Extract Year, Month, Day and Time [duplicate]
Solution 1:
Use the to_datetime
function, specifying a format to match your data.
raw_data['Mycol'] = pd.to_datetime(raw_data['Mycol'], format='%d%b%Y:%H:%M:%S.%f')
Solution 2:
If you have more than one column to be converted you can do the following:
df[["col1", "col2", "col3"]] = df[["col1", "col2", "col3"]].apply(pd.to_datetime)
Solution 3:
You can use the DataFrame method .apply()
to operate on the values in Mycol:
>>> df = pd.DataFrame(['05SEP2014:00:00:00.000'],columns=['Mycol'])
>>> df
Mycol
0 05SEP2014:00:00:00.000
>>> import datetime as dt
>>> df['Mycol'] = df['Mycol'].apply(lambda x:
dt.datetime.strptime(x,'%d%b%Y:%H:%M:%S.%f'))
>>> df
Mycol
0 2014-09-05
Solution 4:
Use the pandas to_datetime
function to parse the column as DateTime. Also, by using infer_datetime_format=True
, it will automatically detect the format and convert the mentioned column to DateTime.
import pandas as pd
raw_data['Mycol'] = pd.to_datetime(raw_data['Mycol'], infer_datetime_format=True)
Solution 5:
raw_data['Mycol'] = pd.to_datetime(raw_data['Mycol'], format='%d%b%Y:%H:%M:%S.%f')
works, however it results in a Python warning of
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value
instead
I would guess this is due to some chaining indexing.