Is there a way in Rust to overload method for a specific type?
The following is only an example. If there's a native solution for this exact problem with reading bytes - cool, but my goal is to learn how to do it by myself, for any other purpose as well.
I'd like to do something like this: (pseudo-code below)
let mut reader = Reader::new(bytesArr);
let int32: i32 = reader.read(); // separate implementation to read 4 bits and convert into int32
let int64: i64 = reader.read(); // separate implementation to read 8 bits and convert into int64
I imagine it looking like this: (pseudo-code again)
impl Reader {
read<T>(&mut self) -> T {
// if T is i32 ... else if ...
}
}
or like this:
impl Reader {
read(&mut self) -> i32 {
// ...
}
read(&mut self) -> i64 {
// ...
}
}
But haven't found anything relatable yet.
(I actually have, for the first case (if T is i32 ...
), but it looked really unreadable and inconvenient)
You could do this by having a Readable
trait which you implement on i32
and i64
, which does the operation. Then on Reader
you could have a generic function which takes any type that is Readable
and return it, for example:
struct Reader {
n: u8,
}
trait Readable {
fn read_from_reader(reader: &mut Reader) -> Self;
}
impl Readable for i32 {
fn read_from_reader(reader: &mut Reader) -> i32 {
reader.n += 1;
reader.n as i32
}
}
impl Readable for i64 {
fn read_from_reader(reader: &mut Reader) -> i64 {
reader.n += 1;
reader.n as i64
}
}
impl Reader {
fn read<T: Readable>(&mut self) -> T {
T::read_from_reader(self)
}
}
fn main() {
let mut r = Reader { n: 0 };
let int32: i32 = r.read();
let int64: i64 = r.read();
println!("{} {}", int32, int64);
}
You can try it on the playground
After some trials and searches, I found that implementing them in current Rust seems a bit difficult, but not impossible.
Here is the code, I'll explain it afterwards:
#![feature(generic_const_exprs)]
use std::{
mem::{self, MaybeUninit},
ptr,
};
static DATA: [u8; 8] = [
u8::MAX,
u8::MAX,
u8::MAX,
u8::MAX,
u8::MAX,
u8::MAX,
u8::MAX,
u8::MAX,
];
struct Reader;
impl Reader {
fn read<T: Copy + Sized>(&self) -> T
where
[(); mem::size_of::<T>()]: ,
{
let mut buf = [unsafe { MaybeUninit::uninit().assume_init() }; mem::size_of::<T>()];
unsafe {
ptr::copy_nonoverlapping(DATA.as_ptr(), buf.as_mut_ptr(), buf.len());
mem::transmute_copy(&buf)
}
}
}
fn main() {
let reader = Reader;
let v_u8: u8 = reader.read();
dbg!(v_u8);
let v_u16: u16 = reader.read();
dbg!(v_u16);
let v_u32: u32 = reader.read();
dbg!(v_u32);
let v_u64: u64 = reader.read();
dbg!(v_u64);
}
Suppose the global static variable DATA
is the target data you want to read.
In current Rust, we cannot directly use the size of a generic parameter as the length of an array. This does not work:
fn example<T: Copy + Sized>() {
let mut _buf = [0_u8; mem::size_of::<T>()];
}
The compiler gives a weird error:
error: unconstrained generic constant
--> src\main.rs:34:31
|
34 | let mut _buf = [0_u8; mem::size_of::<T>()];
| ^^^^^^^^^^^^^^^^^^^
|
= help: try adding a `where` bound using this expression: `where [(); mem::size_of::<T>()]:`
There is an issue that is tracking it, if you want to go deeper into this error you can take a look.
We just follow the compiler's suggestion to add a where
bound. This requires feature generic_const_exprs
to be enabled.
Next, unsafe { MaybeUninit::uninit().assume_init() }
is optional, which drops the overhead of initializing this array, since we will eventually overwrite it completely. You can replace it with 0_u8
if you don't like it.
Finally, copy the data you need and transmute this array to your generic type, return.
I think you will see the output you expect:
[src\main.rs:38] v_u8 = 255
[src\main.rs:41] v_u16 = 65535
[src\main.rs:44] v_u32 = 4294967295
[src\main.rs:47] v_u64 = 18446744073709551615