K8s: deployment patterns for node.js apps with dbs
Solution 1:
A purist answer:
Each of your five services should have their own image, and their own database. It's okay for the databases to be in the same cluster so long as you have a way to back them up, run migrations, and do other database-y things. If your cloud provider offers managed versions of these databases then storing the data outside the cluster is fine too, and can help get around some of the disk-space issues you cite.
I tend to use Helm for actual deployment mechanics as a way to inject things like host names and other settings at deploy time. Each service would have its own Dockerfile, its own Helm chart, its own package.json
, and so on. Your CI system would build and deploy each service separately.
A practical answer:
There's nothing technically wrong with running multiple containers off the same image doing different work. If you have a single repository and a single build system now, and you don't mind a change in one service causing all of them to redeploy, this approach will work fine.
Whatever build system your repository has now, if you go with this approach, I'd put a single Dockerfile in the repository root and probably have a single Helm chart to deploy it. In the Helm chart Deployment spec you can override the command to run with something like
# This fragment appears under containers: in a Deployment's Pod spec
# (this is Helm chart, Go text/template templated, YAML syntax)
image: {{ .Values.repository }}/{{ .Values.image }}:{{ .Values.tag }}
command: node service3/index.js
Kubernetes's terminology here is slightly off from Docker's, particularly if you use an entrypoint wrapper script. Kubernetes command:
overrides a Dockerfile ENTRYPOINT
, and Kubernetes args:
overrides CMD
.
In either case:
Many things in Kubernetes allocate infrastructure dynamically. For example, you can set up a horizontal pod autoscaler to set the replica count of a Deployment based on load, or a cluster autoscaler to set up more (cloud) instances to run Pods if needed. If you have a persistent volume provisioner then a Kubernetes PersistentVolumeClaim object can be backed by dynamically allocated storage (on AWS, for example, it creates an EBS volume), and you won't be limited to the storage space of a single node. You can often find prebuilt Helm charts for the databases; if not, use a StatefulSet to have Kubernetes create the PVCs for you.
Make sure your CI system produces images with a unique tag, maybe based on a timestamp or source control commit ID. Don't use ...:latest
or another fixed string: Kubernetes won't redeploy on update unless the text of the image:
string changes.
Multiple clusters is tricky in a lot of ways. In my day job we have separate clusters per environment (development, pre-production, production) but the application itself runs in a single cluster and there is no communication between clusters. If you can manage the storage then running the databases in the same cluster is fine.
Several Compose options don't translate well to Kubernetes. I'd especially recommend removing the volumes:
that bind-mount your code into the container and validating your image runs correctly, before you do anything Kubernetes-specific. If you're replacing the entire source tree in the image then you're not really actually running the image, and it'll be much easier to debug locally. In Kubernetes you also have almost no control over networks:
but they're not really needed in Compose either.