Convert a tensorflow dataset to a python list with strings
Consider the following code below:
import numpy as np
import tensorflow as tf
simple_data_samples = np.array([
[1, 1, 1, -1, -1],
[2, 2, 2, -2, -2],
[3, 3, 3, -3, -3],
[4, 4, 4, -4, -4],
[5, 5, 5, -5, -5],
[6, 6, 6, -6, -6],
[7, 7, 7, -7, -7],
[8, 8, 8, -8, -8],
[9, 9, 9, -9, -9],
[10, 10, 10, -10, -10],
[11, 11, 11, -11, -11],
[12, 12, 12, -12, -12],
])
def timeseries_dataset_multistep_combined(features, label_slice, input_sequence_length, output_sequence_length, batch_size):
feature_ds = tf.keras.preprocessing.timeseries_dataset_from_array(features, None, input_sequence_length + output_sequence_length, batch_size=batch_size)
def split_feature_label(x):
x=tf.strings.as_string(x)
return x[:, :input_sequence_length, :], x[:, input_sequence_length:, label_slice]
feature_ds = feature_ds.map(split_feature_label)
return feature_ds
ds = timeseries_dataset_multistep_combined(simple_data_samples, slice(None, None, None), input_sequence_length=4, output_sequence_length=2,
batch_size=1)
def print_dataset(ds):
for inputs, targets in ds:
print("---Batch---")
print("Feature:", inputs.numpy())
print("Label:", targets.numpy())
print("")
print_dataset(ds)
The tensorflow dataset "ds" consists of an input and target. Now I would like to transform the tensorflow dataset to a python list with the following properties:
Index Type Size Value
0 str 13 1 2 3 4 5 6
1 str 13 1 2 3 4 5 6
2 str 13 1 2 3 4 5 6
3 str 13 -1 -2 -3 -4 -5 -6
4 str 13 -1 -2 -3 -4 -5 -6
5 str 13 2 3 4 5 6 7
.... and so on
In the above example, we hypothetically created a python list containing strings. In the field "value" you can see the inputs of the tensorflow datasets on the left hand side (e.g. 1 2 3 4 with an whitespace between the strings) and on the right hand side you can see the corresponding targets (e.g. 5 6 with a whitespace between the strings). It is important to note that there is a horizontal tab "\t" between the inputs and targets (e.g. 1 2 3 4.\t5 6.)
How would I code this?
Solution 1:
If you want a pandas
dataframe, you could try something like this:
features = np.concatenate(list(ds.map(lambda x, y: tf.transpose(tf.squeeze(x, axis=0)))))
targets = np.concatenate(list(ds.map(lambda x, y: tf.transpose(tf.squeeze(y, axis=0)))))
values = list(map(lambda x: x[0]+ "\t" + x[1], zip([" ".join(item) for item in features.astype(str)],
[" ".join(item) for item in targets.astype(str)])))
types = [type(v).__name__ for v in values]
sizes = [len(v) for v in values]
df = pd.DataFrame({'Size':sizes, 'Type':types, 'Value':values})
df.index.name = 'Index'
print(df.head())
Solution 2:
I used your print_dataset function.
def print_dataset(ds):
list_sets = []
for input, targets in ds:
input = np.transpose(np.array(inputs)[0])
label = np.transpose(np.array(targets)[0])
for input_set, label_set in zip(input, label):
set = ""
set = "".join(str(value).replace("b'", "").replace("'", "") + " " for value in input_set)
set += "\t" # add the tab
set += "".join(str(value).replace("b'", "").replace("'", "") + " " for value in label_set)
set = set[:-1] # remove the trailing white space
# print(set) #prints each line individually
list_sets.append(set)
print(list_sets) # prints the whole list
Ignore that you can see the "\t" instead of a tab with spaces if you print the individual lines every works fine. Python only prints the "\t" to shorten the length by replacing useless space with shortcuts.