Tensorflow js, How to get the output of each layer? [duplicate]

I am trying to create a simple neural network viewer like the diagram below. I can get the trained weights, but where are node values stored in a tensorflow js layer when prediction has run? In other words, I can get the line values, but not the circled values. In a simple network these are as simple as the x and y passed into the fit method.

enter image description here


Solution 1:

getWeigths allows to retrieve the weights of a layer

Using tf.model, one can output the prediction of each layer

const input = tf.input({shape: [5]});
        const denseLayer1 = tf.layers.dense({units: 10, activation: 'relu'});
        const denseLayer2 = tf.layers.dense({units: 2, activation: 'softmax'});
        const output1 = denseLayer1.apply(input);
        const output2 = denseLayer2.apply(output1);
        const model = tf.model({inputs: input, outputs: [output1, output2]});
        const [firstLayer, secondLayer] = model.predict(tf.ones([2, 5]));
        
        console.log(denseLayer1.getWeights().length) // 2  W and B for a dense layer
        denseLayer1.getWeights()[1].print()
        console.log(denseLayer2.getWeights().length) // also 2
        // output of each layer WX + B
        firstLayer.print();
        secondLayer.print()
<html>
  <head>
    <!-- Load TensorFlow.js -->
    <script src="https://cdn.jsdelivr.net/npm/@tensorflow/[email protected]"> </script>
  </head>

  <body>
  </body>
</html>

One can also do the same thing using tf.sequential()

const model = tf.sequential();

// first layer
model.add(tf.layers.dense({units: 10, inputShape: [4]}));
// second layer
model.add(tf.layers.dense({units: 1}));

// get all the layers of the model
const layers = model.layers
layers[0].getWeights()[0].print()
<html>
  <head>
    <!-- Load TensorFlow.js -->
    <script src="https://cdn.jsdelivr.net/npm/@tensorflow/[email protected]"> </script>
  </head>

  <body>
  </body>
</html>

However with tf.sequential, one cannot get the prediction of each layer as the way one can with tf.model using the output passed as parameter in the config of the model