Optimized coordinates selection in 2D numpy array
I have a numpy array of coordinates. I want to select those between Xmin and Xmax and between Ymin and Ymax.
Here is my code :
grid = np.random.randint(2, size=81).reshape(9,9)
List_of_coordinates = np.argwhere(grid == 0)
Xmin, Xmax, Ymin, Ymax = 0,3,6,9
List_of_coordinates = List_of_coordinates[List_of_coordinates[:, 1] >= Ymin]
List_of_coordinates = List_of_coordinates[List_of_coordinates[:, 1] < Ymax]
List_of_coordinates = List_of_coordinates[List_of_coordinates[:, 0] >= Xmin]
List_of_coordinates = List_of_coordinates[List_of_coordinates[:, 0] < Xmax]
Is there a faster way ?
Solution 1:
Slice first the grid, you'll get indices relative to the beginning of the slice, then add the start of the slice to come back to the absolute coordinates:
List_of_coordinates = (np.argwhere(grid[Xmin:Xmax,Ymin:Ymax] == 0)
+np.array([Xmin,Ymin]))
Example
grid:
array([[0, 1, 0, 0, 0, 0, 0, 1, 1],
[1, 0, 1, 0, 1, 0, 1, 0, 0],
[0, 1, 0, 1, 0, 1, 0, 0, 1],
[1, 1, 1, 1, 1, 1, 1, 1, 1],
[0, 1, 1, 1, 0, 0, 1, 0, 0],
[1, 0, 0, 0, 0, 1, 1, 0, 0],
[0, 0, 0, 0, 0, 1, 1, 0, 1],
[1, 1, 0, 1, 1, 1, 1, 1, 0],
[1, 0, 1, 0, 1, 0, 1, 0, 0]])
slice:
array([[0, 1, 1],
[1, 0, 0],
[0, 0, 1]])
coordinates of 0s:
array([[0, 6],
[1, 7],
[1, 8],
[2, 6],
[2, 7]])