Unpivot dataframe in Pyspark with new column
I would like to unpivot a dataframe that looks like this:
Col1 Col2 Val1 Val2
abc def 12 75
ghi jkl 67 86
... ... .. ..
into something that will look like this:
Col1 Col2 NewCol Val
abc def KEY1 12
abc def KEY2 75
ghi jkl KEY1 67
ghi jkl KEY2 86
... ... .... ..
I am quite new to python, but I know there is no unpivot function in pyspark.. any idea how I can achieve this? Thanks a lot!
Solution 1:
Given the Dataframe you provided, one could use:
from pyspark.sql import functions as F
df.select(
F.col("Col1"),
F.col("Col2"),
F.explode(
F.map_from_arrays(
F.array(F.lit("key1"), F.lit("key2")),
F.array(F.col("val1"), F.col("val2"))
)
)
)
As long as you maintain the order of keys and values, you should be fine