Is it possible to vectorize non-trivial loop in C with SIMD? (multiple length 5 double-precision dot products reusing one input)
I have a performance critical C code where > 90% of the time is spent doing one basic operation:
The C code I am using is:
static void function(double *X1, double *Y1, double *X2, double *Y2, double *output) {
double Z1, Z2;
int i, j, k;
for (i = 0, j = 0; i < 25; j++) { // sweep Y
Z1 = 0;
Z2 = 0;
for (k = 0; k < 5; k++, i++) { // sweep X
Z1 += X1[k] * Y1[i];
Z2 += X2[k] * Y2[i];
}
output[j] = Z1*Z2;
}
}
The lengths are fixed (X is 5; Y is 25; the output is 5). I have tried everything I know to make this faster. When I compile this code using clang with -O3 -march=native -Rpass-analysis=loop-vectorize -Rpass=loop-vectorize -Rpass-missed=loop-vectorize
, I get this message:
remark: the cost-model indicates that vectorization is not beneficial [-Rpass-missed=loop-vectorize]
But I assume the way to make this faster is with SIMD somehow. Any suggestions would be appreciated.
Try the following version, it requires SSE2 and FMA3. Untested.
void function_fma( const double* X1, const double* Y1, const double* X2, const double* Y2, double* output )
{
// Load X1 and X2 vectors into 6 registers; the instruction set has 16 of them available, BTW.
const __m128d x1_0 = _mm_loadu_pd( X1 );
const __m128d x1_1 = _mm_loadu_pd( X1 + 2 );
const __m128d x1_2 = _mm_load_sd( X1 + 4 );
const __m128d x2_0 = _mm_loadu_pd( X2 );
const __m128d x2_1 = _mm_loadu_pd( X2 + 2 );
const __m128d x2_2 = _mm_load_sd( X2 + 4 );
// 5 iterations of the outer loop
const double* const y1End = Y1 + 25;
while( Y1 < y1End )
{
// Multiply first 2 values
__m128d z1 = _mm_mul_pd( x1_0, _mm_loadu_pd( Y1 ) );
__m128d z2 = _mm_mul_pd( x2_0, _mm_loadu_pd( Y2 ) );
// Multiply + accumulate next 2 values
z1 = _mm_fmadd_pd( x1_1, _mm_loadu_pd( Y1 + 2 ), z1 );
z2 = _mm_fmadd_pd( x2_1, _mm_loadu_pd( Y2 + 2 ), z2 );
// Horizontal sum both vectors
z1 = _mm_add_sd( z1, _mm_unpackhi_pd( z1, z1 ) );
z2 = _mm_add_sd( z2, _mm_unpackhi_pd( z2, z2 ) );
// Multiply + accumulate the last 5-th value
z1 = _mm_fmadd_sd( x1_2, _mm_load_sd( Y1 + 4 ), z1 );
z2 = _mm_fmadd_sd( x2_2, _mm_load_sd( Y2 + 4 ), z2 );
// Advance Y pointers
Y1 += 5;
Y2 += 5;
// Compute and store z1 * z2
z1 = _mm_mul_sd( z1, z2 );
_mm_store_sd( output, z1 );
// Advance output pointer
output++;
}
}
It’s possible to micro-optimize further by using AVX, but I’m not sure it’s going to help much because the inner loop is too short. I think that these two extra FMA instructions are cheaper than the overhead of computing horizontal sum of the 32-byte AVX vectors.
Update: here's another version, it takes less instructions overall at the cost of a few shuffles. May of may not be faster for your use case. Requires SSE 4.1 but I think all CPUs which have FMA3 have SSE 4.1 as well.
void function_fma_v2( const double* X1, const double* Y1, const double* X2, const double* Y2, double* output )
{
// Load X1 and X2 vectors into 5 registers
const __m128d x1_0 = _mm_loadu_pd( X1 );
const __m128d x1_1 = _mm_loadu_pd( X1 + 2 );
__m128d xLast = _mm_load_sd( X1 + 4 );
const __m128d x2_0 = _mm_loadu_pd( X2 );
const __m128d x2_1 = _mm_loadu_pd( X2 + 2 );
xLast = _mm_loadh_pd( xLast, X2 + 4 );
// 5 iterations of the outer loop
const double* const y1End = Y1 + 25;
while( Y1 < y1End )
{
// Multiply first 2 values
__m128d z1 = _mm_mul_pd( x1_0, _mm_loadu_pd( Y1 ) );
__m128d z2 = _mm_mul_pd( x2_0, _mm_loadu_pd( Y2 ) );
// Multiply + accumulate next 2 values
z1 = _mm_fmadd_pd( x1_1, _mm_loadu_pd( Y1 + 2 ), z1 );
z2 = _mm_fmadd_pd( x2_1, _mm_loadu_pd( Y2 + 2 ), z2 );
// Horizontal sum both vectors while transposing
__m128d res = _mm_shuffle_pd( z1, z2, _MM_SHUFFLE2( 0, 1 ) ); // [ z1.y, z2.x ]
// On Intel CPUs that blend SSE4 instruction doesn't use shuffle port,
// throughput is 3x better than shuffle or unpack. On AMD they're equal.
res = _mm_add_pd( res, _mm_blend_pd( z1, z2, 0b10 ) ); // [ z1.x + z1.y, z2.x + z2.y ]
// Load the last 5-th Y values into a single vector
__m128d yLast = _mm_load_sd( Y1 + 4 );
yLast = _mm_loadh_pd( yLast, Y2 + 4 );
// Advance Y pointers
Y1 += 5;
Y2 += 5;
// Multiply + accumulate the last 5-th value
res = _mm_fmadd_pd( xLast, yLast, res );
// Compute and store z1 * z2
res = _mm_mul_sd( res, _mm_unpackhi_pd( res, res ) );
_mm_store_sd( output, res );
// Advance output pointer
output++;
}
}