Calculating the limit $\lim((n!)^{1/n})$
Find $\lim_{n\to\infty} ((n!)^{1/n})$. The question seemed rather simple at first, and then I realized I was not sure how to properly deal with this at all. My attempt: take the logarithm, $$\lim_{n\to\infty} \ln((n!)^{1/n}) = \lim_{n\to\infty} (1/n)\ln(n!) = \lim_{n\to\infty} (\ln(n!)/n)$$ Applying L'hopital's rule: $$\lim_{n\to\infty} [n! (-\gamma + \sum(1/k))]/n! = \lim_{n\to\infty} (-\gamma + \sum(1/k))= \lim_{n\to\infty} (-(\lim(\sum(1/k) - \ln(n)) + \sum(1/k)) = \lim_{n\to\infty} (\ln(n) + \sum(1/k)-\sum(1/k) = \lim_{n\to\infty} (\ln(n))$$ I proceeded to expand the $\ln(n)$ out into Maclaurin form $$\lim_{n\to\infty} (n + (n^2/2)+...) = \infty$$ Since I $\ln$'ed in the beginning, I proceeded to e the infinity $$= e^\infty = \infty$$
So am I write in how I approached this or am I just not on the right track? I know it diverges, I was just wanted to try my best to explicitly show it.
By rearranging terms, we can see that $$(n!)^2=[1\cdot n][2\cdot (n-1)][3\cdot (n-2)] \cdots [(n-1)\cdot 2][n\cdot 1].$$ Each of the $n$ products $(k+1)\cdot (n-k)$, for $0\le k<n$, is $\ge n$. Thus $$(n!)^2 \ge n^{n} \quad\text{and therefore}\quad (n!)^{1/n}\ge \sqrt{n}.$$
$$ \begin{aligned} \lim_{n\to\infty} (n!)^{1/n} &=\lim_{n\to\infty} \exp(\tfrac{1}{n} \ln n!)\\ &= \lim_{n\to\infty} \exp[\tfrac{1}{n} (\ln 1+\ln 2+\cdots + \ln n)]\\ &\ge \lim_{n\to\infty}\exp \left[ \frac{1}{n} \int_1 ^n \ln x dx\right]\\ &=\lim_{n\to\infty} \exp \frac{n\ln n -n+1}{n} \end{aligned} $$
and last side of above inequality diverges.
Taking $\log$ and using Stolz-Cesaro: $$ \log\lim_{n\to\infty}n!^{1/n}= \lim_{n\to\infty}\log n!^{1/n}= \lim_{n\to\infty}{\log 1+\cdots+\log n\over n}= \lim_{n\to\infty}{\log(n+1)\over(n+1)-n}= \lim_{n\to\infty}\log(n+1)=\infty,$$ so $\lim n!^{1/n}=\infty$.