Implement Stack using Two Queues
A similar question was asked earlier there, but the question here is the reverse of it, using two queues as a stack. The question...
Given two queues with their standard operations (enqueue
, dequeue
, isempty
, size
), implement a stack with its standard operations (pop
, push
, isempty
, size
).
There should be two versions of the solution.
- Version A: The stack should be efficient when pushing an item; and
- Version B: The stack should be efficient when popping an item.
I am interested in the algorithm more than any specific language implementations. However, I welcome solutions expressed in languages which I am familiar (java,c#,python,vb,javascript,php).
Solution 1:
Version A (efficient push):
- push:
- enqueue in queue1
- pop:
- while size of queue1 is bigger than 1, pipe dequeued items from queue1 into queue2
- dequeue and return the last item of queue1, then switch the names of queue1 and queue2
Version B (efficient pop):
- push:
- enqueue in queue2
- enqueue all items of queue1 in queue2, then switch the names of queue1 and queue2
- pop:
- deqeue from queue1
Solution 2:
The easiest (and maybe only) way of doing this is by pushing new elements into the empty queue, and then dequeuing the other and enqeuing into the previously empty queue. With this way the latest is always at the front of the queue. This would be version B, for version A you just reverse the process by dequeuing the elements into the second queue except for the last one.
Step 0:
"Stack"
+---+---+---+---+---+
| | | | | |
+---+---+---+---+---+
Queue A Queue B
+---+---+---+---+---+ +---+---+---+---+---+
| | | | | | | | | | | |
+---+---+---+---+---+ +---+---+---+---+---+
Step 1:
"Stack"
+---+---+---+---+---+
| 1 | | | | |
+---+---+---+---+---+
Queue A Queue B
+---+---+---+---+---+ +---+---+---+---+---+
| 1 | | | | | | | | | | |
+---+---+---+---+---+ +---+---+---+---+---+
Step 2:
"Stack"
+---+---+---+---+---+
| 2 | 1 | | | |
+---+---+---+---+---+
Queue A Queue B
+---+---+---+---+---+ +---+---+---+---+---+
| | | | | | | 2 | 1 | | | |
+---+---+---+---+---+ +---+---+---+---+---+
Step 3:
"Stack"
+---+---+---+---+---+
| 3 | 2 | 1 | | |
+---+---+---+---+---+
Queue A Queue B
+---+---+---+---+---+ +---+---+---+---+---+
| 3 | 2 | 1 | | | | | | | | |
+---+---+---+---+---+ +---+---+---+---+---+
Solution 3:
We can do this with one queue:
push:
- enqueue new element.
- If
n
is the number of elements in the queue, then remove and insert elementn-1
times.
pop:
- dequeue
.
push 1
front
+----+----+----+----+----+----+
| 1 | | | | | | insert 1
+----+----+----+----+----+----+
push2
front
+----+----+----+----+----+----+
| 1 | 2 | | | | | insert 2
+----+----+----+----+----+----+
front
+----+----+----+----+----+----+
| | 2 | 1 | | | | remove and insert 1
+----+----+----+----+----+----+
insert 3
front
+----+----+----+----+----+----+
| | 2 | 1 | 3 | | | insert 3
+----+----+----+----+----+----+
front
+----+----+----+----+----+----+
| | | 1 | 3 | 2 | | remove and insert 2
+----+----+----+----+----+----+
front
+----+----+----+----+----+----+
| | | | 3 | 2 | 1 | remove and insert 1
+----+----+----+----+----+----+
Sample implementation:
int stack_pop (queue_data *q)
{
return queue_remove (q);
}
void stack_push (queue_data *q, int val)
{
int old_count = queue_get_element_count (q), i;
queue_insert (q, val);
for (i=0; i<old_count; i++)
{
queue_insert (q, queue_remove (q));
}
}
Solution 4:
import java.util.*;
/**
*
* @author Mahmood
*/
public class StackImplUsingQueues {
Queue<Integer> q1 = new LinkedList<Integer>();
Queue<Integer> q2 = new LinkedList<Integer>();
public int pop() {
if (q1.peek() == null) {
System.out.println("The stack is empty, nothing to return");
int i = 0;
return i;
} else {
int pop = q1.remove();
return pop;
}
}
public void push(int data) {
if (q1.peek() == null) {
q1.add(data);
} else {
for (int i = q1.size(); i > 0; i--) {
q2.add(q1.remove());
}
q1.add(data);
for (int j = q2.size(); j > 0; j--) {
q1.add(q2.remove());
}
}
}
public static void main(String[] args) {
StackImplUsingQueues s1 = new StackImplUsingQueues();
// Stack s1 = new Stack();
s1.push(1);
s1.push(2);
s1.push(3);
s1.push(4);
s1.push(5);
s1.push(6);
s1.push(7);
s1.push(8);
s1.push(9);
s1.push(10);
// s1.push(6);
System.out.println("1st = " + s1.pop());
System.out.println("2nd = " + s1.pop());
System.out.println("3rd = " + s1.pop());
System.out.println("4th = " + s1.pop());
System.out.println("5th = " + s1.pop());
System.out.println("6th = " + s1.pop());
System.out.println("7th = " + s1.pop());
System.out.println("8th = " + s1.pop());
System.out.println("9th = " + s1.pop());
System.out.println("10th= " + s1.pop());
}
}
Solution 5:
Can we just use one queue to implement a stack? I can use two queues, but considering single queue would be more efficient. Here is the code:
public void Push(T val)
{
queLower.Enqueue(val);
}
public T Pop()
{
if (queLower.Count == 0 )
{
Console.Write("Stack is empty!");
return default(T);
}
if (queLower.Count > 0)
{
for (int i = 0; i < queLower.Count - 1;i++ )
{
queLower.Enqueue(queLower.Dequeue ());
}
}
return queLower.Dequeue();
}