R Function for returning ALL factors
Solution 1:
To follow up on my comment (thanks to @Ramnath for my typo), the brute force method seems to work reasonably well here on my 64 bit 8 gig machine:
FUN <- function(x) {
x <- as.integer(x)
div <- seq_len(abs(x))
factors <- div[x %% div == 0L]
factors <- list(neg = -factors, pos = factors)
return(factors)
}
A few examples:
> FUN(100)
$neg
[1] -1 -2 -4 -5 -10 -20 -25 -50 -100
$pos
[1] 1 2 4 5 10 20 25 50 100
> FUN(-42)
$neg
[1] -1 -2 -3 -6 -7 -14 -21 -42
$pos
[1] 1 2 3 6 7 14 21 42
#and big number
> system.time(FUN(1e8))
user system elapsed
1.95 0.18 2.14
Solution 2:
You can get all factors from the prime factors. gmp
calculates these very quickly.
library(gmp)
library(plyr)
get_all_factors <- function(n)
{
prime_factor_tables <- lapply(
setNames(n, n),
function(i)
{
if(i == 1) return(data.frame(x = 1L, freq = 1L))
plyr::count(as.integer(gmp::factorize(i)))
}
)
lapply(
prime_factor_tables,
function(pft)
{
powers <- plyr::alply(pft, 1, function(row) row$x ^ seq.int(0L, row$freq))
power_grid <- do.call(expand.grid, powers)
sort(unique(apply(power_grid, 1, prod)))
}
)
}
get_all_factors(c(1, 7, 60, 663, 2520, 75600, 15876000, 174636000, 403409160000))
Solution 3:
Update
This is now implemented in the package RcppBigIntAlgos
. See this answer for more details.
Original Post
The algorithm has been fully updated and now implements multiple polynomials as well as some clever sieving techniques that eliminates millions of checks. In addition to the original links, this paper along with this post from primo were very helpful for this last stage (many kudos to primo). Primo does a great job of explaining the guts of the QS in a relatively short space and also wrote a pretty amazing algorithm (it will factor the number at the bottom, 38! + 1, in under 2 secs!! Insane!!).
As promised, below is my humble R implementation of the Quadratic Sieve. I have been working on this algorithm sporadically since I promised it in late January. I will not try to explain it fully (unless requested... also, the links below do a very good job) as it is very complicated and hopefully, my function names speak for themselves. This has proved to be one of the most challenging algorithms I have ever attempted to execute as it is demanding both from a programmer's point of view as well as mathematically. I have read countless papers and ultimately, I found these five to be the most helpful (QSieve1, QSieve2, QSieve3, QSieve4, QSieve5).
N.B. This algorithm, as it stands, does not serve very well as a general prime factorization algorithm. If it was optimized further, it would need to be accompanied by a section of code that factors out smaller primes (i.e. less than 10^5 as suggested by this post), then call QuadSieveAll, check to see if these are primes, and if not, call QuadSieveAll on both of these factors, etc. until you are left with all primes (all of these steps are not that difficult). However, the main point of this post is to highlight the heart of the Quadratic Sieve, so the examples below are all semiprimes (even though it will factor most odd numbers not containing a square… Also, I haven’t seen an example of the QS that didn’t demonstrate a non-semiprime). I know the OP was looking for a method to return all factors and not the prime factorization, but this algorithm (if optimized further) coupled with one of the algorithms above would be a force to reckon with as a general factoring algorithm (especially given that the OP was needing something for Project Euler, which usually requires much more than brute force methods). By the way, the MyIntToBit
function is a variation of this answer and the PrimeSieve
is from a post that @Dontas appeared on a while back (Kudos on that as well).
QuadSieveMultiPolysAll <- function(MyN, fudge1=0L, fudge2=0L, LenB=0L) {
### 'MyN' is the number to be factored; 'fudge1' is an arbitrary number
### that is used to determine the size of your prime base for sieving;
### 'fudge2' is used to set a threshold for sieving;
### 'LenB' is a the size of the sieving interval. The last three
### arguments are optional (they are determined based off of the
### size of MyN if left blank)
### The first 8 functions are helper functions
PrimeSieve <- function(n) {
n <- as.integer(n)
if (n > 1e9) stop("n too large")
primes <- rep(TRUE, n)
primes[1] <- FALSE
last.prime <- 2L
fsqr <- floor(sqrt(n))
while (last.prime <= fsqr) {
primes[seq.int(last.prime^2, n, last.prime)] <- FALSE
sel <- which(primes[(last.prime + 1):(fsqr + 1)])
if (any(sel)) {
last.prime <- last.prime + min(sel)
} else {
last.prime <- fsqr + 1
}
}
MyPs <- which(primes)
rm(primes)
gc()
MyPs
}
MyIntToBit <- function(x, dig) {
i <- 0L
string <- numeric(dig)
while (x > 0) {
string[dig - i] <- x %% 2L
x <- x %/% 2L
i <- i + 1L
}
string
}
ExpBySquaringBig <- function(x, n, p) {
if (n == 1) {
MyAns <- mod.bigz(x,p)
} else if (mod.bigz(n,2)==0) {
MyAns <- ExpBySquaringBig(mod.bigz(pow.bigz(x,2),p),div.bigz(n,2),p)
} else {
MyAns <- mod.bigz(mul.bigz(x,ExpBySquaringBig(mod.bigz(
pow.bigz(x,2),p), div.bigz(sub.bigz(n,1),2),p)),p)
}
MyAns
}
TonelliShanks <- function(a,p) {
P1 <- sub.bigz(p,1); j <- 0L; s <- P1
while (mod.bigz(s,2)==0L) {s <- s/2; j <- j+1L}
if (j==1L) {
MyAns1 <- ExpBySquaringBig(a,(p+1L)/4,p)
MyAns2 <- mod.bigz(-1 * ExpBySquaringBig(a,(p+1L)/4,p),p)
} else {
n <- 2L
Legendre2 <- ExpBySquaringBig(n,P1/2,p)
while (Legendre2==1L) {n <- n+1L; Legendre2 <- ExpBySquaringBig(n,P1/2,p)}
x <- ExpBySquaringBig(a,(s+1L)/2,p)
b <- ExpBySquaringBig(a,s,p)
g <- ExpBySquaringBig(n,s,p)
r <- j; m <- 1L
Test <- mod.bigz(b,p)
while (!(Test==1L) && !(m==0L)) {
m <- 0L
Test <- mod.bigz(b,p)
while (!(Test==1L)) {m <- m+1L; Test <- ExpBySquaringBig(b,pow.bigz(2,m),p)}
if (!m==0) {
x <- mod.bigz(x * ExpBySquaringBig(g,pow.bigz(2,r-m-1L),p),p)
g <- ExpBySquaringBig(g,pow.bigz(2,r-m),p)
b <- mod.bigz(b*g,p); r <- m
}; Test <- 0L
}; MyAns1 <- x; MyAns2 <- mod.bigz(p-x,p)
}
c(MyAns1, MyAns2)
}
SieveLists <- function(facLim, FBase, vecLen, sieveD, MInt) {
vLen <- ceiling(vecLen/2); SecondHalf <- (vLen+1L):vecLen
MInt1 <- MInt[1:vLen]; MInt2 <- MInt[SecondHalf]
tl <- vector("list",length=facLim)
for (m in 3:facLim) {
st1 <- mod.bigz(MInt1[1],FBase[m])
m1 <- 1L+as.integer(mod.bigz(sieveD[[m]][1] - st1,FBase[m]))
m2 <- 1L+as.integer(mod.bigz(sieveD[[m]][2] - st1,FBase[m]))
sl1 <- seq.int(m1,vLen,FBase[m])
sl2 <- seq.int(m2,vLen,FBase[m])
tl1 <- list(sl1,sl2)
st2 <- mod.bigz(MInt2[1],FBase[m])
m3 <- vLen+1L+as.integer(mod.bigz(sieveD[[m]][1] - st2,FBase[m]))
m4 <- vLen+1L+as.integer(mod.bigz(sieveD[[m]][2] - st2,FBase[m]))
sl3 <- seq.int(m3,vecLen,FBase[m])
sl4 <- seq.int(m4,vecLen,FBase[m])
tl2 <- list(sl3,sl4)
tl[[m]] <- list(tl1,tl2)
}
tl
}
SieverMod <- function(facLim, FBase, vecLen, SD, MInt, FList, LogFB, Lim, myCol) {
MyLogs <- rep(0,nrow(SD))
for (m in 3:facLim) {
MyBool <- rep(FALSE,vecLen)
MyBool[c(FList[[m]][[1]][[1]],FList[[m]][[2]][[1]])] <- TRUE
MyBool[c(FList[[m]][[1]][[2]],FList[[m]][[2]][[2]])] <- TRUE
temp <- which(MyBool)
MyLogs[temp] <- MyLogs[temp] + LogFB[m]
}
MySieve <- which(MyLogs > Lim)
MInt <- MInt[MySieve]; NewSD <- SD[MySieve,]
newLen <- length(MySieve); GoForIT <- FALSE
MyMat <- matrix(integer(0),nrow=newLen,ncol=myCol)
MyMat[which(NewSD[,1L] < 0),1L] <- 1L; MyMat[which(NewSD[,1L] > 0),1L] <- 0L
if ((myCol-1L) - (facLim+1L) > 0L) {MyMat[,((facLim+2L):(myCol-1L))] <- 0L}
if (newLen==1L) {MyMat <- matrix(MyMat,nrow=1,byrow=TRUE)}
if (newLen > 0L) {
GoForIT <- TRUE
for (m in 1:facLim) {
vec <- rep(0L,newLen)
temp <- which((NewSD[,1L]%%FBase[m])==0L)
NewSD[temp,] <- NewSD[temp,]/FBase[m]; vec[temp] <- 1L
test <- temp[which((NewSD[temp,]%%FBase[m])==0L)]
while (length(test)>0L) {
NewSD[test,] <- NewSD[test,]/FBase[m]
vec[test] <- (vec[test]+1L)
test <- test[which((NewSD[test,]%%FBase[m])==0L)]
}
MyMat[,m+1L] <- vec
}
}
list(MyMat,NewSD,MInt,GoForIT)
}
reduceMatrix <- function(mat) {
tempMin <- 0L; n1 <- ncol(mat); n2 <- nrow(mat)
mymax <- 1L
for (i in 1:n1) {
temp <- which(mat[,i]==1L)
t <- which(temp >= mymax)
if (length(temp)>0L && length(t)>0L) {
MyMin <- min(temp[t])
if (!(MyMin==mymax)) {
vec <- mat[MyMin,]
mat[MyMin,] <- mat[mymax,]
mat[mymax,] <- vec
}
t <- t[-1]; temp <- temp[t]
for (j in temp) {mat[j,] <- (mat[j,]+mat[mymax,])%%2L}
mymax <- mymax+1L
}
}
if (mymax<n2) {simpMat <- mat[-(mymax:n2),]} else {simpMat <- mat}
lenSimp <- nrow(simpMat)
if (is.null(lenSimp)) {lenSimp <- 0L}
mycols <- 1:n1
if (lenSimp>1L) {
## "Diagonalizing" Matrix
for (i in 1:lenSimp) {
if (all(simpMat[i,]==0L)) {simpMat <- simpMat[-i,]; next}
if (!simpMat[i,i]==1L) {
t <- min(which(simpMat[i,]==1L))
vec <- simpMat[,i]; tempCol <- mycols[i]
simpMat[,i] <- simpMat[,t]; mycols[i] <- mycols[t]
simpMat[,t] <- vec; mycols[t] <- tempCol
}
}
lenSimp <- nrow(simpMat); MyList <- vector("list",length=n1)
MyFree <- mycols[which((1:n1)>lenSimp)]; for (i in MyFree) {MyList[[i]] <- i}
if (is.null(lenSimp)) {lenSimp <- 0L}
if (lenSimp>1L) {
for (i in lenSimp:1L) {
t <- which(simpMat[i,]==1L)
if (length(t)==1L) {
simpMat[ ,t] <- 0L
MyList[[mycols[i]]] <- 0L
} else {
t1 <- t[t>i]
if (all(t1 > lenSimp)) {
MyList[[mycols[i]]] <- MyList[[mycols[t1[1]]]]
if (length(t1)>1) {
for (j in 2:length(t1)) {MyList[[mycols[i]]] <- c(MyList[[mycols[i]]], MyList[[mycols[t1[j]]]])}
}
}
else {
for (j in t1) {
if (length(MyList[[mycols[i]]])==0L) {MyList[[mycols[i]]] <- MyList[[mycols[j]]]}
else {
e1 <- which(MyList[[mycols[i]]]%in%MyList[[mycols[j]]])
if (length(e1)==0) {
MyList[[mycols[i]]] <- c(MyList[[mycols[i]]],MyList[[mycols[j]]])
} else {
e2 <- which(!MyList[[mycols[j]]]%in%MyList[[mycols[i]]])
MyList[[mycols[i]]] <- MyList[[mycols[i]]][-e1]
if (length(e2)>0L) {MyList[[mycols[i]]] <- c(MyList[[mycols[i]]], MyList[[mycols[j]]][e2])}
}
}
}
}
}
}
TheList <- lapply(MyList, function(x) {if (length(x)==0L) {0} else {x}})
list(TheList,MyFree)
} else {
list(NULL,NULL)
}
} else {
list(NULL,NULL)
}
}
GetFacs <- function(vec1, vec2, n) {
x <- mod.bigz(prod.bigz(vec1),n)
y <- mod.bigz(prod.bigz(vec2),n)
MyAns <- c(gcd.bigz(x-y,n),gcd.bigz(x+y,n))
MyAns[sort.list(asNumeric(MyAns))]
}
SolutionSearch <- function(mymat, M2, n, FB) {
colTest <- which(apply(mymat, 2, sum) == 0)
if (length(colTest) > 0) {solmat <- mymat[ ,-colTest]} else {solmat <- mymat}
if (length(nrow(solmat)) > 0) {
nullMat <- reduceMatrix(t(solmat %% 2L))
listSol <- nullMat[[1]]; freeVar <- nullMat[[2]]; LF <- length(freeVar)
} else {LF <- 0L}
if (LF > 0L) {
for (i in 2:min(10^8,(2^LF + 1L))) {
PosAns <- MyIntToBit(i, LF)
posVec <- sapply(listSol, function(x) {
t <- which(freeVar %in% x)
if (length(t)==0L) {
0
} else {
sum(PosAns[t])%%2L
}
})
ansVec <- which(posVec==1L)
if (length(ansVec)>0) {
if (length(ansVec) > 1L) {
myY <- apply(mymat[ansVec,],2,sum)
} else {
myY <- mymat[ansVec,]
}
if (sum(myY %% 2) < 1) {
myY <- as.integer(myY/2)
myY <- pow.bigz(FB,myY[-1])
temp <- GetFacs(M2[ansVec], myY, n)
if (!(1==temp[1]) && !(1==temp[2])) {
return(temp)
}
}
}
}
}
}
### Below is the main portion of the Quadratic Sieve
BegTime <- Sys.time(); MyNum <- as.bigz(MyN); DigCount <- nchar(as.character(MyN))
P <- PrimeSieve(10^5)
SqrtInt <- .mpfr2bigz(trunc(sqrt(mpfr(MyNum,sizeinbase(MyNum,b=2)+5L))))
if (DigCount < 24) {
DigSize <- c(4,10,15,20,23)
f_Pos <- c(0.5,0.25,0.15,0.1,0.05)
MSize <- c(5000,7000,10000,12500,15000)
if (fudge1==0L) {
LM1 <- lm(f_Pos ~ DigSize)
m1 <- summary(LM1)$coefficients[2,1]
b1 <- summary(LM1)$coefficients[1,1]
fudge1 <- DigCount*m1 + b1
}
if (LenB==0L) {
LM2 <- lm(MSize ~ DigSize)
m2 <- summary(LM2)$coefficients[2,1]
b2 <- summary(LM2)$coefficients[1,1]
LenB <- ceiling(DigCount*m2 + b2)
}
LimB <- trunc(exp((.5+fudge1)*sqrt(log(MyNum)*log(log(MyNum)))))
B <- P[P<=LimB]; B <- B[-1]
facBase <- P[which(sapply(B, function(x) ExpBySquaringBig(MyNum,(x-1)/2,x)==1L))+1L]
LenFBase <- length(facBase)+1L
} else if (DigCount < 67) {
## These values were obtained from "The Multiple Polynomial
## Quadratic Sieve" by Robert D. Silverman
DigSize <- c(24,30,36,42,48,54,60,66)
FBSize <- c(100,200,400,900,1200,2000,3000,4500)
MSize <- c(5,25,25,50,100,250,350,500)
LM1 <- loess(FBSize ~ DigSize)
LM2 <- loess(MSize ~ DigSize)
if (fudge1==0L) {
fudge1 <- -0.4
LimB <- trunc(exp((.5+fudge1)*sqrt(log(MyNum)*log(log(MyNum)))))
myTarget <- ceiling(predict(LM1, DigCount))
while (LimB < myTarget) {
LimB <- trunc(exp((.5+fudge1)*sqrt(log(MyNum)*log(log(MyNum)))))
fudge1 <- fudge1+0.001
}
B <- P[P<=LimB]; B <- B[-1]
facBase <- P[which(sapply(B, function(x) ExpBySquaringBig(MyNum,(x-1)/2,x)==1L))+1L]
LenFBase <- length(facBase)+1L
while (LenFBase < myTarget) {
fudge1 <- fudge1+0.005
LimB <- trunc(exp((.5+fudge1)*sqrt(log(MyNum)*log(log(MyNum)))))
myind <- which(P==max(B))+1L
myset <- tempP <- P[myind]
while (tempP < LimB) {
myind <- myind + 1L
tempP <- P[myind]
myset <- c(myset, tempP)
}
for (p in myset) {
t <- ExpBySquaringBig(MyNum,(p-1)/2,p)==1L
if (t) {facBase <- c(facBase,p)}
}
B <- c(B, myset)
LenFBase <- length(facBase)+1L
}
} else {
LimB <- trunc(exp((.5+fudge1)*sqrt(log(MyNum)*log(log(MyNum)))))
B <- P[P<=LimB]; B <- B[-1]
facBase <- P[which(sapply(B, function(x) ExpBySquaringBig(MyNum,(x-1)/2,x)==1L))+1L]
LenFBase <- length(facBase)+1L
}
if (LenB==0L) {LenB <- 1000*ceiling(predict(LM2, DigCount))}
} else {
return("The number you've entered is currently too big for this algorithm!!")
}
SieveDist <- lapply(facBase, function(x) TonelliShanks(MyNum,x))
SieveDist <- c(1L,SieveDist); SieveDist[[1]] <- c(SieveDist[[1]],1L); facBase <- c(2L,facBase)
Lower <- -LenB; Upper <- LenB; LenB2 <- 2*LenB+1L; MyInterval <- Lower:Upper
M <- MyInterval + SqrtInt ## Set that will be tested
SqrDiff <- matrix(sub.bigz(pow.bigz(M,2),MyNum),nrow=length(M),ncol=1L)
maxM <- max(MyInterval)
LnFB <- log(facBase)
## N.B. primo uses 0.735, as his siever
## is more efficient than the one employed here
if (fudge2==0L) {
if (DigCount < 8) {
fudge2 <- 0
} else if (DigCount < 12) {
fudge2 <- .7
} else if (DigCount < 20) {
fudge2 <- 1.3
} else {
fudge2 <- 1.6
}
}
TheCut <- log10(maxM*sqrt(2*asNumeric(MyNum)))*fudge2
myPrimes <- as.bigz(facBase)
CoolList <- SieveLists(LenFBase, facBase, LenB2, SieveDist, MyInterval)
GetMatrix <- SieverMod(LenFBase, facBase, LenB2, SqrDiff, M, CoolList, LnFB, TheCut, LenFBase+1L)
if (GetMatrix[[4]]) {
newmat <- GetMatrix[[1]]; NewSD <- GetMatrix[[2]]; M <- GetMatrix[[3]]
NonSplitFacs <- which(abs(NewSD[,1L])>1L)
newmat <- newmat[-NonSplitFacs, ]
M <- M[-NonSplitFacs]
lenM <- length(M)
if (class(newmat) == "matrix") {
if (nrow(newmat) > 0) {
PosAns <- SolutionSearch(newmat,M,MyNum,myPrimes)
} else {
PosAns <- vector()
}
} else {
newmat <- matrix(newmat, nrow = 1)
PosAns <- vector()
}
} else {
newmat <- matrix(integer(0),ncol=(LenFBase+1L))
PosAns <- vector()
}
Atemp <- .mpfr2bigz(trunc(sqrt(sqrt(mpfr(2*MyNum))/maxM)))
if (Atemp < max(facBase)) {Atemp <- max(facBase)}; myPoly <- 0L
while (length(PosAns)==0L) {LegTest <- TRUE
while (LegTest) {
Atemp <- nextprime(Atemp)
Legendre <- asNumeric(ExpBySquaringBig(MyNum,(Atemp-1L)/2,Atemp))
if (Legendre == 1) {LegTest <- FALSE}
}
A <- Atemp^2
Btemp <- max(TonelliShanks(MyNum, Atemp))
B2 <- (Btemp + (MyNum - Btemp^2) * inv.bigz(2*Btemp,Atemp))%%A
C <- as.bigz((B2^2 - MyNum)/A)
myPoly <- myPoly + 1L
polySieveD <- lapply(1:LenFBase, function(x) {
AInv <- inv.bigz(A,facBase[x])
asNumeric(c(((SieveDist[[x]][1]-B2)*AInv)%%facBase[x],
((SieveDist[[x]][2]-B2)*AInv)%%facBase[x]))
})
M1 <- A*MyInterval + B2
SqrDiff <- matrix(A*pow.bigz(MyInterval,2) + 2*B2*MyInterval + C,nrow=length(M1),ncol=1L)
CoolList <- SieveLists(LenFBase, facBase, LenB2, polySieveD, MyInterval)
myPrimes <- c(myPrimes,Atemp)
LenP <- length(myPrimes)
GetMatrix <- SieverMod(LenFBase, facBase, LenB2, SqrDiff, M1, CoolList, LnFB, TheCut, LenP+1L)
if (GetMatrix[[4]]) {
n2mat <- GetMatrix[[1]]; N2SD <- GetMatrix[[2]]; M1 <- GetMatrix[[3]]
n2mat[,LenP+1L] <- rep(2L,nrow(N2SD))
if (length(N2SD) > 0) {NonSplitFacs <- which(abs(N2SD[,1L])>1L)} else {NonSplitFacs <- LenB2}
if (length(NonSplitFacs)<2*LenB) {
M1 <- M1[-NonSplitFacs]; lenM1 <- length(M1)
n2mat <- n2mat[-NonSplitFacs,]
if (lenM1==1L) {n2mat <- matrix(n2mat,nrow=1)}
if (ncol(newmat) < (LenP+1L)) {
numCol <- (LenP + 1L) - ncol(newmat)
newmat <- cbind(newmat,matrix(rep(0L,numCol*nrow(newmat)),ncol=numCol))
}
newmat <- rbind(newmat,n2mat); lenM <- lenM+lenM1; M <- c(M,M1)
if (class(newmat) == "matrix") {
if (nrow(newmat) > 0) {
PosAns <- SolutionSearch(newmat,M,MyNum,myPrimes)
}
}
}
}
}
EndTime <- Sys.time()
TotTime <- EndTime - BegTime
print(format(TotTime))
return(PosAns)
}
With Old QS algorithm
> library(gmp)
> library(Rmpfr)
> n3 <- prod(nextprime(urand.bigz(2, 40, 17)))
> system.time(t5 <- QuadSieveAll(n3,0.1,myps))
user system elapsed
164.72 0.77 165.63
> system.time(t6 <- factorize(n3))
user system elapsed
0.1 0.0 0.1
> all(t5[sort.list(asNumeric(t5))]==t6[sort.list(asNumeric(t6))])
[1] TRUE
With New Muli-Polynomial QS algorithm
> QuadSieveMultiPolysAll(n3)
[1] "4.952 secs"
Big Integer ('bigz') object of length 2:
[1] 342086446909 483830424611
> n4 <- prod(nextprime(urand.bigz(2,50,5)))
> QuadSieveMultiPolysAll(n4) ## With old algo, it took over 4 hours
[1] "1.131717 mins"
Big Integer ('bigz') object of length 2:
[1] 166543958545561 880194119571287
> n5 <- as.bigz("94968915845307373740134800567566911") ## 35 digits
> QuadSieveMultiPolysAll(n5)
[1] "3.813167 mins"
Big Integer ('bigz') object of length 2:
[1] 216366620575959221 438925910071081891
> system.time(factorize(n5)) ## It appears we are reaching the limits of factorize
user system elapsed
131.97 0.00 131.98
Side note: The number n5 above is a very interesting number. Check it out here
The Breaking Point!!!!
> n6 <- factorialZ(38) + 1L ## 45 digits
> QuadSieveMultiPolysAll(n6)
[1] "22.79092 mins"
Big Integer ('bigz') object of length 2:
[1] 14029308060317546154181 37280713718589679646221
> system.time(factorize(n6)) ## Shut it down after 2 days of running
Latest Triumph (50 digits)
> n9 <- prod(nextprime(urand.bigz(2,82,42)))
> QuadSieveMultiPolysAll(n9)
[1] "12.9297 hours"
Big Integer ('bigz') object of length 2:
[1] 2128750292720207278230259 4721136619794898059404993
## Based off of some crude test, factorize(n9) would take more than a year.
It should be noted that the QS generally doesn't perform as well as the Pollard's rho algorithm on smaller numbers and the power of the QS starts to become apparent as the numbers get larger.