Yay, indices~

namespace aux{
template<std::size_t...> struct seq{};

template<std::size_t N, std::size_t... Is>
struct gen_seq : gen_seq<N-1, N-1, Is...>{};

template<std::size_t... Is>
struct gen_seq<0, Is...> : seq<Is...>{};

template<class Ch, class Tr, class Tuple, std::size_t... Is>
void print_tuple(std::basic_ostream<Ch,Tr>& os, Tuple const& t, seq<Is...>){
  using swallow = int[];
  (void)swallow{0, (void(os << (Is == 0? "" : ", ") << std::get<Is>(t)), 0)...};
}
} // aux::

template<class Ch, class Tr, class... Args>
auto operator<<(std::basic_ostream<Ch, Tr>& os, std::tuple<Args...> const& t)
    -> std::basic_ostream<Ch, Tr>&
{
  os << "(";
  aux::print_tuple(os, t, aux::gen_seq<sizeof...(Args)>());
  return os << ")";
}

Live example on Ideone.


For the delimiter stuff, just add these partial specializations:

// Delimiters for tuple
template<class... Args>
struct delimiters<std::tuple<Args...>, char> {
  static const delimiters_values<char> values;
};

template<class... Args>
const delimiters_values<char> delimiters<std::tuple<Args...>, char>::values = { "(", ", ", ")" };

template<class... Args>
struct delimiters<std::tuple<Args...>, wchar_t> {
  static const delimiters_values<wchar_t> values;
};

template<class... Args>
const delimiters_values<wchar_t> delimiters<std::tuple<Args...>, wchar_t>::values = { L"(", L", ", L")" };

and change the operator<< and print_tuple accordingly:

template<class Ch, class Tr, class... Args>
auto operator<<(std::basic_ostream<Ch, Tr>& os, std::tuple<Args...> const& t)
    -> std::basic_ostream<Ch, Tr>&
{
  typedef std::tuple<Args...> tuple_t;
  if(delimiters<tuple_t, Ch>::values.prefix != 0)
    os << delimiters<tuple_t,char>::values.prefix;

  print_tuple(os, t, aux::gen_seq<sizeof...(Args)>());

  if(delimiters<tuple_t, Ch>::values.postfix != 0)
    os << delimiters<tuple_t,char>::values.postfix;

  return os;
}

And

template<class Ch, class Tr, class Tuple, std::size_t... Is>
void print_tuple(std::basic_ostream<Ch, Tr>& os, Tuple const& t, seq<Is...>){
  using swallow = int[];
  char const* delim = delimiters<Tuple, Ch>::values.delimiter;
  if(!delim) delim = "";
  (void)swallow{0, (void(os << (Is == 0? "" : delim) << std::get<Is>(t)), 0)...};
}

In C++17 we can accomplish this with a little less code by taking advantage of Fold expressions, particularly a unary left fold:

template<class TupType, size_t... I>
void print(const TupType& _tup, std::index_sequence<I...>)
{
    std::cout << "(";
    (..., (std::cout << (I == 0? "" : ", ") << std::get<I>(_tup)));
    std::cout << ")\n";
}

template<class... T>
void print (const std::tuple<T...>& _tup)
{
    print(_tup, std::make_index_sequence<sizeof...(T)>());
}

Live Demo outputs:

(5, Hello, -0.1)

given

auto a = std::make_tuple(5, "Hello", -0.1);
print(a);

Explanation

Our unary left fold is of the form

... op pack

where op in our scenario is the comma operator, and pack is the expression containing our tuple in an unexpanded context like:

(..., (std::cout << std::get<I>(myTuple))

So if I have a tuple like so:

auto myTuple = std::make_tuple(5, "Hello", -0.1);

And a std::integer_sequence whose values are specified by a non-type template (see above code)

size_t... I

Then the expression

(..., (std::cout << std::get<I>(myTuple))

Gets expanded into

((std::cout << std::get<0>(myTuple)), (std::cout << std::get<1>(myTuple))), (std::cout << std::get<2>(myTuple));

Which will print

5Hello-0.1

Which is gross, so we need to do some more trickery to add a comma separator to be printed first unless it's the first element.

To accomplish that, we modify the pack portion of the fold expression to print " ," if the current index I is not the first, hence the (I == 0? "" : ", ") portion*:

(..., (std::cout << (I == 0? "" : ", ") << std::get<I>(_tup)));

And now we'll get

5, Hello, -0.1

Which looks nicer (Note: I wanted similar output as this answer)

*Note: You could do the comma separation in a variety of ways than what I ended up with. I initially added commas conditionally after instead of before by testing against std::tuple_size<TupType>::value - 1, but that was too long, so I tested instead against sizeof...(I) - 1, but in the end I copied Xeo and we ended up with what I've got.


I got this working fine in C++11 (gcc 4.7). There are I am sure some pitfalls I have not considered but I think the code is easy to read and and not complicated. The only thing that may be strange is the "guard" struct tuple_printer that ensure that we terminate when the last element is reached. The other strange thing may be sizeof...(Types) that return the number of types in Types type pack. It is used to determine the index of the last element (size...(Types) - 1).

template<typename Type, unsigned N, unsigned Last>
struct tuple_printer {

    static void print(std::ostream& out, const Type& value) {
        out << std::get<N>(value) << ", ";
        tuple_printer<Type, N + 1, Last>::print(out, value);
    }
};

template<typename Type, unsigned N>
struct tuple_printer<Type, N, N> {

    static void print(std::ostream& out, const Type& value) {
        out << std::get<N>(value);
    }

};

template<typename... Types>
std::ostream& operator<<(std::ostream& out, const std::tuple<Types...>& value) {
    out << "(";
    tuple_printer<std::tuple<Types...>, 0, sizeof...(Types) - 1>::print(out, value);
    out << ")";
    return out;
}