Fastest way to convert a number to radix 64 in JavaScript?
In JavaScript you can convert a number to a string representation with a specific radix as follows:
(12345).toString(36) // "9ix"
...and you can convert it back to a regular number like this:
parseInt("9ix", 36) // 12345
36 is the highest radix you can specify. It apparently uses the characters 0-9
and a-z
for the digits (36 total).
My question: what's the fastest way to convert a number to a base 64 representation (for example, using A-Z
, and -
and _
for the extra 28 digits)?
Update: Four people have posted responses saying this question is duplicated, or that I'm looking for Base64. I'm not.
"Base64" is a way of encoding binary data in a simple ASCII character set, to make it safe for transfer over networks etc. (so that text-only systems won't garble the binary).
That's not what I'm asking about. I'm asking about converting numbers to a radix 64 string representation. (JavaScript's toString(radix)
does this automatically for any radix up to 36; I need a custom function to get radix 64.)
Update 2: Here are some input & output examples...
0 → "0"
1 → "1"
9 → "9"
10 → "a"
35 → "z"
61 → "Z"
62 → "-"
63 → "_"
64 → "10"
65 → "11"
128 → "20"
etc.
Here is a sketch for a solution for NUMBERS (not arrays of bytes :)
only for positive numbers, ignores fractional parts, and not really tested -- just a sketch!
Base64 = {
_Rixits :
// 0 8 16 24 32 40 48 56 63
// v v v v v v v v v
"0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz+/",
// You have the freedom, here, to choose the glyphs you want for
// representing your base-64 numbers. The ASCII encoding guys usually
// choose a set of glyphs beginning with ABCD..., but, looking at
// your update #2, I deduce that you want glyphs beginning with
// 0123..., which is a fine choice and aligns the first ten numbers
// in base 64 with the first ten numbers in decimal.
// This cannot handle negative numbers and only works on the
// integer part, discarding the fractional part.
// Doing better means deciding on whether you're just representing
// the subset of javascript numbers of twos-complement 32-bit integers
// or going with base-64 representations for the bit pattern of the
// underlying IEEE floating-point number, or representing the mantissae
// and exponents separately, or some other possibility. For now, bail
fromNumber : function(number) {
if (isNaN(Number(number)) || number === null ||
number === Number.POSITIVE_INFINITY)
throw "The input is not valid";
if (number < 0)
throw "Can't represent negative numbers now";
var rixit; // like 'digit', only in some non-decimal radix
var residual = Math.floor(number);
var result = '';
while (true) {
rixit = residual % 64
// console.log("rixit : " + rixit);
// console.log("result before : " + result);
result = this._Rixits.charAt(rixit) + result;
// console.log("result after : " + result);
// console.log("residual before : " + residual);
residual = Math.floor(residual / 64);
// console.log("residual after : " + residual);
if (residual == 0)
break;
}
return result;
},
toNumber : function(rixits) {
var result = 0;
// console.log("rixits : " + rixits);
// console.log("rixits.split('') : " + rixits.split(''));
rixits = rixits.split('');
for (var e = 0; e < rixits.length; e++) {
// console.log("_Rixits.indexOf(" + rixits[e] + ") : " +
// this._Rixits.indexOf(rixits[e]));
// console.log("result before : " + result);
result = (result * 64) + this._Rixits.indexOf(rixits[e]);
// console.log("result after : " + result);
}
return result;
}
}
UPDATE: Here's some (very lightweight) testing of the above, for running in NodeJs where you have console.log.
function testBase64(x) {
console.log("My number is " + x);
var g = Base64.fromNumber(x);
console.log("My base-64 representation is " + g);
var h = Base64.toNumber(g);
console.log("Returning from base-64, I get " + h);
if (h !== Math.floor(x))
throw "TEST FAILED";
}
testBase64(0);
try {
testBase64(-1);
}
catch (err) {
console.log("caught >>>>>> " + err);
}
try {
testBase64(undefined);
}
catch (err) {
console.log("caught >>>>>> " + err);
}
try {
testBase64(null);
}
catch (err) {
console.log("caught >>>>>> " + err);
}
try {
testBase64(Number.NaN);
}
catch (err) {
console.log("caught >>>>>> " + err);
}
try {
testBase64(Number.POSITIVE_INFINITY);
}
catch (err) {
console.log("caught >>>>>> " + err);
}
try {
testBase64(Number.NEGATIVE_INFINITY);
}
catch (err) {
console.log("caught >>>>>> " + err);
}
for(i=0; i<100; i++)
testBase64(Math.random()*1e14);
Here's a version just for 32 bit ints, that is, any number between -2147483648 and 2147483647 (inclusive).
I modified the version in the top answer by Reb Cabin. This should be quite a bit faster because it uses bit operations and lookup tables.
Base64 = (function () {
var digitsStr =
// 0 8 16 24 32 40 48 56 63
// v v v v v v v v v
"0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz+-";
var digits = digitsStr.split('');
var digitsMap = {};
for (var i = 0; i < digits.length; i++) {
digitsMap[digits[i]] = i;
}
return {
fromInt: function(int32) {
var result = '';
while (true) {
result = digits[int32 & 0x3f] + result;
int32 >>>= 6;
if (int32 === 0)
break;
}
return result;
},
toInt: function(digitsStr) {
var result = 0;
var digits = digitsStr.split('');
for (var i = 0; i < digits.length; i++) {
result = (result << 6) + digitsMap[digits[i]];
}
return result;
}
};
})();
For example,
Base64.fromInt(-2147483648); // gives "200000"
Base64.toInt("200000"); // gives -2147483648