Evaluate the limit $\lim\limits_{n \to \infty} \frac{1}{1+n^2} +\frac{2}{2+n^2}+ \ldots +\frac{n}{n+n^2}$
Evaluate the limit
$$\lim_{n \to \infty} \dfrac{1}{1+n^2} +\dfrac{2}{2+n^2}+ \ldots+\dfrac{n}{n+n^2}$$
My approach :
If I divide numerator and denominator by $n^2$ I get :
$$\lim_{ n \to \infty} \dfrac{\frac{1}{n^2}}{\frac{1}{n^2} +1} +\dfrac{\frac{2}{n^2}}{\frac{2}{n^2} +1} + \ldots+ \dfrac{\frac{1}{n}}{\frac{1}{n} + 1}=0$$
but the answer is $\dfrac{1}{2}$ please suggest how to solve this.. thanks.
Solution 1:
For each $1\leq i\leq n$, $\frac{1}{n^2+i}\leq \frac{1}{n^2}$ and $\frac{1}{n^2+i}\geq \frac{1}{n^2+n}$, and so we may bound the sum from above and below by $$\sum_{i=1}^{n}\frac{i}{n+n^{2}}\leq\sum_{i=1}^{n}\frac{i}{i+n^{2}}\leq\sum_{i=1}^{n}\frac{i}{n^{2}}.$$ Since $\sum_{i=1}^{n}i=\frac{n(n+1)}{2},$ this becomes $$\frac{1}{2}=\frac{n(n+1)}{2n(n+1)}\leq\sum_{i=1}^{n}\frac{i}{i+n^{2}}\leq\frac{n(n+1)}{2n^{2}}=\frac{1}{2}\left(1+\frac{1}{n}\right),$$ and so it follows from the squeeze theorem that the limit is $\frac{1}{2}$.
Solution 2:
$$ S_n=\sum_{k=1}^n \frac{k}{k+n^2} = \sum_{k=1}^n \left( 1 -\frac{n^2}{k+n^2} \right) \\ = n - \sum_{k=1}^n \left(\frac{n^2}{k+n^2} \right) $$ but $$\sum_{k=1}^n \left(\frac{n^2}{k+n^2} \right) = \sum_{k=1}^n \frac1{1+\frac{k}{n^2}}$$
$$ = \sum_{k=1}^n \sum_{j=0}^{\infty} \left(\frac{-k}{n^2} \right)^j \\ = n -\frac1{n^2}\frac{n(n+1)}{2} +O\left(\frac1{n}\right) = n - \frac12 +O\left(\frac1{n}\right) $$ so $$ \lim_{n \rightarrow \infty} S_n = n - (n - \frac12) = \frac12 $$