Finding the derivative of $x\uparrow\uparrow n$ [duplicate]
I am trying to find a general derivative for the function: $f(x)=x^{x^{x^{...^{x}}}}$however to do that I must find $f^{\prime }$ and $f^{\prime \prime}$...etc. I am now trying to write down a general expression for $f^{\prime \prime}$ and I have stumble opon the series in the picture below, I wonder, do anyone have an idea of what sort of expantion it migth be ? I have tried breaking it down into three different sums, but I wasn't very successful!
EDIT
So since this post has gotten some attention and the title has been change I will tell you what I am on about, although I already have a post just for the question in the title from before. I am as I said earlier trying to find a general derivative for the function $f(x)=x^{x^{x^{...^{x}}}}$ where $n$ is an arbitrary number, natural number and greater or equal to 2. I have already made success when I tried to find the first derivative, and I have also found some interesting pattern emerge when the derivatives as well as n incresses. But my question here was if anyone knew what this expation might be or look similar to be, since I have yet to be lernt series etc. I did not know that the question needed such background since it's straight a forward question.
Note: This answer ended up much longer than I intended (supposed to be a "hint"). However, it was too fun to not investigate further, hence the large amount of edits :)
Hint: The derivative of $x\uparrow\uparrow n$ can be expressed in terms of the following recurrence relation $$\frac{d}{dx}\left(x\uparrow\uparrow n\right)=x\uparrow\uparrow n \left(\frac{x\uparrow\uparrow (n-1)}{x}+\log x\frac{d}{dx}\left(x\uparrow\uparrow (n-1)\right)\right)$$ You can use this relation to find a closed form solution
Edit 1: It turns out the closed form is quite horrid so I'll save you the bother and write it out here. You can verify it with mathematical induction if you ever get the time. $$\frac{d}{dx}\left(x\uparrow\uparrow n\right)=\left[\sum _{i=0}^{n-3} x^{-1+\sum _{k=1}^{i+2} x\uparrow\uparrow(n-k)}\log ^i(x) \right]+\left(\log ^{n-2}(x)+\log ^{n-1}(x)\right) x^{\sum _{k=1}^{n-1} x\uparrow\uparrow k}$$
Edit 2: I had some time on my hands so here is a proof of the above recurrence relation: \begin{align*}\frac{d}{dx}\left(x\uparrow\uparrow n\right) &=\frac{d}{dx}\left(x^{x\uparrow\uparrow (n-1)}\right)\\ &=\frac{d}{dx}\left(e^{x\uparrow\uparrow (n-1)\cdot\log x}\right)\\ &=e^{x\uparrow\uparrow (n-1)\cdot\log x}\left(\frac{x\uparrow\uparrow (n-1)}{x}+\log x\cdot\frac{d}{dx}\left(x\uparrow\uparrow (n-1)\right)\right)\\ &=x\uparrow\uparrow n\left(\frac{x\uparrow\uparrow (n-1)}{x}+\log x\cdot\frac{d}{dx}\left(x\uparrow\uparrow (n-1)\right)\right)\end{align*}
Edit 3: After playing around with the formula a little, it turned out that the closed form wasn't so bad after all. The odd looking $\log$'s don't have to awkwardly stand apart from the sum if we work with the convention that $x\uparrow\uparrow0=1$ and $x\uparrow\uparrow-1=0$. By modifying the equation accordingly we get the following much tidier formula: $$\frac{d}{dx}\left(x\uparrow\uparrow n\right)=f(n)=\frac{1}{x}\sum _{i=1}^n x^{\sum _{k=n-1-i}^{n-1} x\uparrow\uparrow k}\cdot\log ^{i-1}(x)$$
With this "new" formula we can now in fact more easily verify that $\frac{d}{dx}\left(x\uparrow\uparrow n\right)$ is indeed equal to $f(n)$. To do this we simply checking that $f(n)$ satisfies the recurrence relation for $\frac{d}{dx}\left(x\uparrow\uparrow n\right)$ and that it works for n=1.
Proof:
(1) If $n=1$ we have \begin{align*}f(1)&=\frac{1}{x}\sum _{i=1}^1 x^{\sum _{k=-i}^{0} x\uparrow\uparrow k}\cdot\log ^{i-1}x \\ &=\frac{1}{x}\left(x^{\sum _{k=-1}^{0} x\uparrow\uparrow k}\cdot\log ^{1-1}x\right) \\ &=\frac{1}{x}\cdot x^{(x\uparrow\uparrow -1)+(x\uparrow\uparrow 0)} \\ &=\frac{1}{x}\cdot x^{0+1}=1=\frac{d}{dx}x=\frac{d}{dx}\left(x\uparrow\uparrow 1\right)\end{align*} Therefore $\frac{d}{dx}\left(x\uparrow\uparrow n\right)=f(n)$ holds for $n=1$.
(2) Now we want to check that $f$ satisfies the recurrence relation:
\begin{align*}f(n+1)&=\frac1x \left(\sum _{j=1}^{n+1} x^{\sum _{k=n-j}^{n} x\uparrow\uparrow k}\cdot\log ^{j-1}(x)\right)\\ &=\frac1x \left(\sum _{i=0}^n x^{\sum _{k=n-1-i}^{n} x\uparrow\uparrow k}\cdot\log ^{i}(x)\right) \hspace{5mm} \{\text{reindexing such that }i=j-1\} \\ &=\frac1x \left(x^{\sum _{k=n-1}^{n} x\uparrow\uparrow k}+\left(\sum _{i=1}^n x^{\sum _{k=n-1-i}^{n} x\uparrow\uparrow k}\cdot\log ^{i}(x)\right)\right) \\ &=\frac1x \left(x^{x\uparrow\uparrow (n-1)+x\uparrow\uparrow n}+x^{x\uparrow\uparrow n}\left(\sum _{i=1}^n x^{\sum _{k=n-1-i}^{n-1} x\uparrow\uparrow k}\cdot\log ^{i}(x)\right)\right) \\ &=\frac1x \left((x\uparrow\uparrow n)\cdot (x\uparrow\uparrow (n+1))+x\uparrow\uparrow (n+1)\left(\sum _{i=1}^n x^{\sum _{k=n-1-i}^{n-1} x\uparrow\uparrow k}\cdot\log ^{i}(x)\right)\right) \\ &=\frac{x\uparrow\uparrow (n+1)}{x} \left(x\uparrow\uparrow n+\sum _{i=1}^n x^{\sum _{k=n-1-i}^{n-1} x\uparrow\uparrow k}\cdot\log ^{i}(x)\right)\\ &=x\uparrow\uparrow (n+1) \left(\frac{x\uparrow\uparrow n}{x}+\frac1x\sum _{i=1}^n x^{\sum _{k=n-1-i}^{n-1} x\uparrow\uparrow k}\cdot\log ^{i}(x)\right) \\ &=x\uparrow\uparrow (n+1) \left(\frac{x\uparrow\uparrow n}{x}+\log x\left(\frac1x\sum _{i=1}^n x^{\sum _{k=n-1-i}^{n-1} x\uparrow\uparrow k}\cdot\log ^{i-1}(x)\right)\right)\\ &=x\uparrow\uparrow (n+1) \left(\frac{x\uparrow\uparrow n}{x}+\log x\cdot f(n)\right) \blacksquare\end{align*} Final edit: upon request by the OP I'll demonstrate how to calculate the second derivative too. I will use the defintion of $f(n)$ that I used above. \begin{align*} \frac{d^2}{dx^2}\left(x\uparrow\uparrow n\right)&=\frac{d}{dx}\left(\sum _{i=1}^n x^{-1+\sum _{k=n-1-i}^{n-1} x\uparrow\uparrow k}\cdot\log ^{i-1}(x)\right)\\ &=\sum _{i=1}^n \frac{d}{dx}\left(x^{-1+\sum _{k=n-1-i}^{n-1} x\uparrow\uparrow k}\cdot\log ^{i-1}(x)\right)\\ &=\sum _{i=1}^n \left((i-1)\cdot x^{-2+\sum _{k=n-1-i}^{n-1} x\uparrow\uparrow k}\cdot\log ^{i-2}(x)+\color{red}{\frac{d}{dx}\left(x^{-1+\sum _{k=n-1-i}^{n-1} x\uparrow\uparrow k}\right)}\color{black}{ \cdot\log ^{i-1}(x)}\right) \end{align*} Now, \begin{align*} \color{red}{\frac{d}{dx}\left(x^{-1+\sum _{k=n-1-i}^{n-1} x\uparrow\uparrow k}\right)}&=\frac{d}{dx}\left(e^{\left(-1+\sum _{k=n-1-i}^{n-1} x\uparrow\uparrow k\right)\log x}\right)\\ &=\frac{x^{\sum _{k=n-1-i}^{n-1} x\uparrow\uparrow k}}{x}\left(\frac{-1+\sum _{k=n-1-i}^{n-1} x\uparrow\uparrow k}{x}+\log x\left(\sum _{k=n-1-i}^{n-1} f(k)\right)\right) \end{align*} Substitute for the red parts and you are done.
In case of the infinite tower powers, the dérivatives can be expressed on closed form thanks to the Lambert's W function : http://mathworld.wolfram.com/LambertW-Function.html
The second derivative is obtained thanks to the chain rule :