Bounded linear operators that commute with translation

For the first one:

Let $\phi_\epsilon(x)=\phi(x/\epsilon)/\epsilon^n$ where $$ \phi(x)=\left\{\begin{array}{cl}c\;e^{|x|^2/(|x|^2-1)}&\text{if }|x|<1\\0&\text{if }|x|\ge1\end{array}\right. $$ and $c$ is chosen so that $\int_{\mathbb{R}^n}\phi(x)\;\mathrm{d}x=1$.

$\|T\phi_\epsilon\|_{L^1}$ is bounded as $\epsilon\to0$, so there is a sequence $\{\epsilon_k\}$ and a measure $\mu$ so that $T\phi_{\epsilon_k}\to\mu$ weakly in $L^1$.

Since $T$ is continuous, linear, and commutes with translation, $$ \begin{align} f*\mu(x) &=\lim_{k\to\infty}\;\int_{\mathbb{R}^n}f(y)\;T\phi_{\epsilon_k}(x-y)\;\mathrm{d}y\\ &=\lim_{k\to\infty}\;\int_{\mathbb{R}^n}f(y)\;T(\phi_{\epsilon_k}(x-y))\;\mathrm{d}y\\ &=\lim_{k\to\infty}\;\int_{\mathbb{R}^n}T(f(y)\;\phi_{\epsilon_k}(x-y))\;\mathrm{d}y\\ &=\lim_{k\to\infty}\;T\left(\int_{\mathbb{R}^n}f(y)\;\phi_{\epsilon_k}(x-y)\;\mathrm{d}y\right)\\ &=T\left(\lim_{k\to\infty}\;\int_{\mathbb{R}^n}f(y)\;\phi_{\epsilon_k}(x-y)\;\mathrm{d}y\right)\\ &=Tf(x) \end{align} $$ For the second one the definition should be $(Tf)^\wedge=m\hat{f}$ (otherwise $T$ is just multiplication by $m$ rather than a Fourier multiplier operator). Let $\psi(x)=e^{-\pi x^2}$ so that $\hat{\psi}=\psi$. $$ \begin{align} \psi(\xi)\;(Tf)^\wedge(\xi) &=(\psi*Tf)^\wedge(\xi)\\ &=\left(\int_{\mathbb{R}^n}\psi(x-y)\;Tf(y)\;\mathrm{d}y\right)^\wedge(\xi)\\ &=\left(\int_{\mathbb{R}^n}\psi(y)\;Tf(x-y)\;\mathrm{d}y\right)^\wedge(\xi)\\ &=\left(\int_{\mathbb{R}^n}T^{\;*}\psi(y)\;f(x-y)\;\mathrm{d}y\right)^\wedge(\xi)\\ &=(T^{\;*}\psi)^\wedge(\xi)\hat{f}(\xi) \end{align} $$ Let $m(\xi)=(T^{\;*}\psi)^\wedge(\xi)/\psi(\xi)$, then we have $$ (Tf)^\wedge(\xi)=m(\xi)\hat{f}(\xi) $$ and therefore, $\|m\|_{L^\infty}=\|T\|_{L^2}$.


Let me just give a literature reference, in case that's what you are interested in. The classical paper on translation invariant operators on Lebesgue spaces is Hormander's 1960 Acta paper "Estimates for translation invariant operators in $L^p$ spaces". If you have access to MathSciNet, here's the mref.