How to merge two sorted arrays into a sorted array? [closed]
This was asked of me in an interview and this is the solution I provided:
public static int[] merge(int[] a, int[] b) {
int[] answer = new int[a.length + b.length];
int i = 0, j = 0, k = 0;
while (i < a.length && j < b.length)
{
if (a[i] < b[j])
{
answer[k] = a[i];
i++;
}
else
{
answer[k] = b[j];
j++;
}
k++;
}
while (i < a.length)
{
answer[k] = a[i];
i++;
k++;
}
while (j < b.length)
{
answer[k] = b[j];
j++;
k++;
}
return answer;
}
Is there a more efficient way to do this?
Edit: Corrected length methods.
Solution 1:
public static int[] merge(int[] a, int[] b) {
int[] answer = new int[a.length + b.length];
int i = 0, j = 0, k = 0;
while (i < a.length && j < b.length)
answer[k++] = a[i] < b[j] ? a[i++] : b[j++];
while (i < a.length)
answer[k++] = a[i++];
while (j < b.length)
answer[k++] = b[j++];
return answer;
}
Is a little bit more compact but exactly the same!
Solution 2:
I'm surprised no one has mentioned this much more cool, efficient and compact implementation:
public static int[] merge(int[] a, int[] b) {
int[] answer = new int[a.length + b.length];
int i = a.length - 1, j = b.length - 1, k = answer.length;
while (k > 0)
answer[--k] =
(j < 0 || (i >= 0 && a[i] >= b[j])) ? a[i--] : b[j--];
return answer;
}
Points of Interests
- Notice that it does same or less number of operations as any other O(n) algorithm but in literally single statement in a single while loop!
- If two arrays are of approximately same size then constant for O(n) is same. However if arrays are really imbalanced then versions with
System.arraycopy
would win because internally it can do this with single x86 assembly instruction. - Notice
a[i] >= b[j]
instead ofa[i] > b[j]
. This guarantees "stability" that is defined as when elements of a and b are equal, we want elements from a before b.