calculation of $\int\frac{1}{\sin^3 x+\cos^3 x}dx$ and $\int\frac{1}{\sin^5 x+\cos^5x}dx$
Given $$\displaystyle \int\frac{1}{\sin^5 x+\cos^5 x}dx$$
First we will simplify $$\sin^5 x+\cos^5 x = \left(\sin^2 x+\cos^2 x\right)\cdot \left(\sin^3 x+\cos^3 x\right) - \sin ^2x\cdot \cos ^2x\left(\sin x+\cos x\right)$$
$$\displaystyle \sin^5 x+\cos^5 x= (\sin x+\cos x)\cdot (1-\sin x\cdot \cos x-\cos^2 x\cdot \sin^2x)$$
So Integral is $$\displaystyle \int\frac{1}{\sin^5 x+\cos^5 x}dx $$
$$\displaystyle = \int\frac{1}{(\sin x+\cos x)\cdot (1-\sin x\cdot \cos x-\cos^2 x\cdot \sin^2x)}dx$$
$$\displaystyle = \int \frac{(\sin x+\cos x)}{(\sin x+\cos x)^2\cdot (1-\sin x\cdot \cos x-\cos^2 x\cdot \sin^2x)}dx$$
$$\displaystyle = \int \frac{(\sin x+\cos x)}{(1+\sin 2x)\cdot (1-\sin x\cdot \cos x-\cos^2 x\cdot \sin^2x)}dx$$
Let $$(\sin x-\cos x) = t\;,$$ Then $$(\cos +\sin x)dx = dt$$ and $$(1-\sin 2x) = t^2\Rightarrow (1+\sin 2x) = (2-t^2)$$
So Integral Convert into $$\displaystyle = 4\int\frac{1}{(2-t^2)\cdot(5-t^4)}dt = 4\int\frac{1}{(t^2-2)\cdot (t^2-\sqrt{5})\cdot (t^2+\sqrt{5})}dt$$
Now Using partial fraction, we get
$$\displaystyle = 4\int \left[\frac{1}{2-t^2}+\frac{1}{(2-\sqrt{5})\cdot 2\sqrt{5}\cdot (\sqrt{5}-t^2)}+\frac{1}{(2+\sqrt{5})\cdot 2\sqrt{5}\cdot (\sqrt{5}+t^2)}\right]dt$$
$$ = \displaystyle \sqrt{2}\ln \left|\frac{\sqrt{2}+t}{\sqrt{2}-t}\right|+\frac{1}{(2-\sqrt{5})\cdot 5^{\frac{3}{4}}}\cdot \ln \left|\frac{5^{\frac{1}{4}}+t}{5^{\frac{1}{4}}-t}\right|+\frac{2}{(2+\sqrt{5})\cdot 5^{\frac{3}{4}}}\cdot \tan^{-1}\left(\frac{t}{5^{\frac{1}{4}}}\right)+\mathbb{C}$$
where $$t=(\sin x-\cos x)$$
$\newcommand{\+}{^{\dagger}}% \newcommand{\angles}[1]{\left\langle #1 \right\rangle}% \newcommand{\braces}[1]{\left\lbrace #1 \right\rbrace}% \newcommand{\bracks}[1]{\left\lbrack #1 \right\rbrack}% \newcommand{\ceil}[1]{\,\left\lceil #1 \right\rceil\,}% \newcommand{\dd}{{\rm d}}% \newcommand{\ds}[1]{\displaystyle{#1}}% \newcommand{\equalby}[1]{{#1 \atop {= \atop \vphantom{\huge A}}}}% \newcommand{\expo}[1]{\,{\rm e}^{#1}\,}% \newcommand{\fermi}{\,{\rm f}}% \newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,}% \newcommand{\half}{{1 \over 2}}% \newcommand{\ic}{{\rm i}}% \newcommand{\iff}{\Longleftrightarrow} \newcommand{\imp}{\Longrightarrow}% \newcommand{\isdiv}{\,\left.\right\vert\,}% \newcommand{\ket}[1]{\left\vert #1\right\rangle}% \newcommand{\ol}[1]{\overline{#1}}% \newcommand{\pars}[1]{\left( #1 \right)}% \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\pp}{{\cal P}}% \newcommand{\root}[2][]{\,\sqrt[#1]{\,#2\,}\,}% \newcommand{\sech}{\,{\rm sech}}% \newcommand{\sgn}{\,{\rm sgn}}% \newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}} \newcommand{\ul}[1]{\underline{#1}}% \newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert}$ $\large\tt\mbox{Just a hint:}$ Write $$ \int{\cos\pars{x}\,\dd x \over \cos\pars{x}\sin^{3}\pars{x} + \cos^{4}\pars{x}} = \int{\dd z \over \root{1 - z^{2}}z^{3} + \bracks{1 - z^{2}}^{2}} \quad\mbox{with}\quad z \equiv \sin\pars{x} $$ Use an Euler substitution: $\root{1 - z^{2}} \equiv t + \ic z$ which yields $1 - z^{2} = t^{2} + 2t\ic z - z^{2}$ such that $\ds{z = {1 - t^{2} \over 2t\ic}}$: \begin{align} \root{1 - z^{2}}&=t + {1 - t^{2} \over 2t} = {1 + t^{2} \over 2t} \\[3mm] \dd z&= {\pars{-2t}\pars{2t\ic} - \pars{2\ic}\pars{1 - t^{2}} \over -4t^{2}}\,\dd t = \ic\,{t^{2} + 1 \over 2t^{2}}\,\dd t \end{align} \begin{align} \int&=\int{1 \over \bracks{\pars{1 + t^{2}}/2t}\bracks{\pars{1 - t^{2}}/2t}^{3}\pars{-1/\ic} + \bracks{\pars{1 + t^{2}}/2t}^{4}} \,\ic\,{t^{2} + 1 \over 2t^{2}}\,\dd t \\[3mm]&=-8\int{t^{2} \over -\pars{1 - t^{2}}^{3} + \ic\pars{1 + t^{2}}^{3}}\,\dd t \end{align}
I am not sure how you can continue either (the second term in the denominator can be expressed as $1-\sin(2 x)/2 - \sin^2(2x)/4,$ but I am not aware of any double angle formula for $\sin x + \cos x.$ The simplest approach to your integral is to use the feared $u = \tan \frac{x}2$ substitution, which reduces the integral to a rational function integral....