AVX2: Computing dot product of 512 float arrays
I will preface this by saying that I am a complete beginner at SIMD intrinsics.
Essentially, I have a CPU which supports the AVX2 instrinsic (Intel(R) Core(TM) i5-7500T CPU @ 2.70GHz
). I would like to know the fastest way to compute the dot product of two std::vector<float>
of size 512
.
I have done some digging online and found this and this, and this stack overflow question suggests using the following function __m256 _mm256_dp_ps(__m256 m1, __m256 m2, const int mask);
, However, these all suggest different ways of performing the dot product I am not sure what is the correct (and fastest) way to do it.
In particular, I am looking for the fastest way to perform dot product for a vector of size 512 (because I know the vector size effects the implementation).
Thank you for your help
Edit 1:
I am also a little confused about the -mavx2
gcc flag. If I use these AVX2 functions, do I need to add the flag when I compile? Also, is gcc able to do these optimizations for me (say if I use the -OFast
gcc flag) if I write a naive dot product implementation?
Edit 2 If anyone has the time and energy, I would very much appreciate if you could write a full implementation. I am sure other beginners would also value this information.
_mm256_dp_ps
is only useful for dot-products of 2 to 4 elements; for longer vectors use vertical SIMD in a loop and reduce to scalar at the end. Using _mm256_dp_ps
and _mm256_add_ps
in a loop would be much slower.
GCC and clang require you to enable (with command line options) ISA extensions that you use intrinsics for, unlike MSVC and ICC.
The code below is probably close to theoretical performance limit of your CPU. Untested.
Compile it with clang or gcc -O3 -march=native
. (Requires at least -mavx -mfma
, but -mtune
options implied by -march
are good, too, and so are the other -mpopcnt
and other things arch=native
enables. Tune options are critical to this compiling efficiently for most CPUs with FMA, specifically -mno-avx256-split-unaligned-load
: Why doesn't gcc resolve _mm256_loadu_pd as single vmovupd?)
Or compile it with MSVC -O2 -arch:AVX2
#include <immintrin.h>
#include <vector>
#include <assert.h>
// CPUs support RAM access like this: "ymmword ptr [rax+64]"
// Using templates with offset int argument to make easier for compiler to emit good code.
// Multiply 8 floats by another 8 floats.
template<int offsetRegs>
inline __m256 mul8( const float* p1, const float* p2 )
{
constexpr int lanes = offsetRegs * 8;
const __m256 a = _mm256_loadu_ps( p1 + lanes );
const __m256 b = _mm256_loadu_ps( p2 + lanes );
return _mm256_mul_ps( a, b );
}
// Returns acc + ( p1 * p2 ), for 8-wide float lanes.
template<int offsetRegs>
inline __m256 fma8( __m256 acc, const float* p1, const float* p2 )
{
constexpr int lanes = offsetRegs * 8;
const __m256 a = _mm256_loadu_ps( p1 + lanes );
const __m256 b = _mm256_loadu_ps( p2 + lanes );
return _mm256_fmadd_ps( a, b, acc );
}
// Compute dot product of float vectors, using 8-wide FMA instructions.
float dotProductFma( const std::vector<float>& a, const std::vector<float>& b )
{
assert( a.size() == b.size() );
assert( 0 == ( a.size() % 32 ) );
if( a.empty() )
return 0.0f;
const float* p1 = a.data();
const float* const p1End = p1 + a.size();
const float* p2 = b.data();
// Process initial 32 values. Nothing to add yet, just multiplying.
__m256 dot0 = mul8<0>( p1, p2 );
__m256 dot1 = mul8<1>( p1, p2 );
__m256 dot2 = mul8<2>( p1, p2 );
__m256 dot3 = mul8<3>( p1, p2 );
p1 += 8 * 4;
p2 += 8 * 4;
// Process the rest of the data.
// The code uses FMA instructions to multiply + accumulate, consuming 32 values per loop iteration.
// Unrolling manually for 2 reasons:
// 1. To reduce data dependencies. With a single register, every loop iteration would depend on the previous result.
// 2. Unrolled code checks for exit condition 4x less often, therefore more CPU cycles spent computing useful stuff.
while( p1 < p1End )
{
dot0 = fma8<0>( dot0, p1, p2 );
dot1 = fma8<1>( dot1, p1, p2 );
dot2 = fma8<2>( dot2, p1, p2 );
dot3 = fma8<3>( dot3, p1, p2 );
p1 += 8 * 4;
p2 += 8 * 4;
}
// Add 32 values into 8
const __m256 dot01 = _mm256_add_ps( dot0, dot1 );
const __m256 dot23 = _mm256_add_ps( dot2, dot3 );
const __m256 dot0123 = _mm256_add_ps( dot01, dot23 );
// Add 8 values into 4
const __m128 r4 = _mm_add_ps( _mm256_castps256_ps128( dot0123 ), _mm256_extractf128_ps( dot0123, 1 ) );
// Add 4 values into 2
const __m128 r2 = _mm_add_ps( r4, _mm_movehl_ps( r4, r4 ) );
// Add 2 lower values into the final result
const __m128 r1 = _mm_add_ss( r2, _mm_movehdup_ps( r2 ) );
// Return the lowest lane of the result vector.
// The intrinsic below compiles into noop, modern compilers return floats in the lowest lane of xmm0 register.
return _mm_cvtss_f32( r1 );
}
Possible further improvements:
Unroll by 8 vectors instead of 4. I’ve checked gcc 9.2 asm output, compiler only used 8 vector registers out of the 16 available.
Make sure both input vectors are aligned, e.g. use a custom allocator which calls
_aligned_malloc
/_aligned_free
on msvc, oraligned_alloc
/free
on gcc & clang. Then replace_mm256_loadu_ps
with_mm256_load_ps
.
To auto-vectorize a simple scalar dot product, you'd also need OpenMP SIMD or -ffast-math
(implied by -Ofast
) to let the compiler treat FP math as associative even though it's not (because of rounding). But GCC won't use multiple accumulators when auto-vectorizing, even if it does unroll, so you'd bottleneck on FMA latency, not load throughput.
(2 loads per FMA means the throughput bottleneck for this code is vector loads, not actual FMA operations.)