Decorators with parameters?

I have a problem with the transfer of variable 'insurance_mode' by the decorator. I would do it by the following decorator statement:

@execute_complete_reservation(True)
def test_booking_gta_object(self):
    self.test_select_gta_object()

but unfortunately, this statement does not work. Perhaps maybe there is better way to solve this problem.

def execute_complete_reservation(test_case,insurance_mode):
    def inner_function(self,*args,**kwargs):
        self.test_create_qsf_query()
        test_case(self,*args,**kwargs)
        self.test_select_room_option()
        if insurance_mode:
            self.test_accept_insurance_crosseling()
        else:
            self.test_decline_insurance_crosseling()
        self.test_configure_pax_details()
        self.test_configure_payer_details

    return inner_function

Solution 1:

The syntax for decorators with arguments is a bit different - the decorator with arguments should return a function that will take a function and return another function. So it should really return a normal decorator. A bit confusing, right? What I mean is:

def decorator_factory(argument):
    def decorator(function):
        def wrapper(*args, **kwargs):
            funny_stuff()
            something_with_argument(argument)
            result = function(*args, **kwargs)
            more_funny_stuff()
            return result
        return wrapper
    return decorator

Here you can read more on the subject - it's also possible to implement this using callable objects and that is also explained there.

Solution 2:

Edit : for an in-depth understanding of the mental model of decorators, take a look at this awesome Pycon Talk. well worth the 30 minutes.

One way of thinking about decorators with arguments is

@decorator
def foo(*args, **kwargs):
    pass

translates to

foo = decorator(foo)

So if the decorator had arguments,

@decorator_with_args(arg)
def foo(*args, **kwargs):
    pass

translates to

foo = decorator_with_args(arg)(foo)

decorator_with_args is a function which accepts a custom argument and which returns the actual decorator (that will be applied to the decorated function).

I use a simple trick with partials to make my decorators easy

from functools import partial

def _pseudo_decor(fun, argument):
    def ret_fun(*args, **kwargs):
        #do stuff here, for eg.
        print ("decorator arg is %s" % str(argument))
        return fun(*args, **kwargs)
    return ret_fun

real_decorator = partial(_pseudo_decor, argument=arg)

@real_decorator
def foo(*args, **kwargs):
    pass

Update:

Above, foo becomes real_decorator(foo)

One effect of decorating a function is that the name foo is overridden upon decorator declaration. foo is "overridden" by whatever is returned by real_decorator. In this case, a new function object.

All of foo's metadata is overridden, notably docstring and function name.

>>> print(foo)
<function _pseudo_decor.<locals>.ret_fun at 0x10666a2f0>

functools.wraps gives us a convenient method to "lift" the docstring and name to the returned function.

from functools import partial, wraps

def _pseudo_decor(fun, argument):
    # magic sauce to lift the name and doc of the function
    @wraps(fun)
    def ret_fun(*args, **kwargs):
        # pre function execution stuff here, for eg.
        print("decorator argument is %s" % str(argument))
        returned_value =  fun(*args, **kwargs)
        # post execution stuff here, for eg.
        print("returned value is %s" % returned_value)
        return returned_value

    return ret_fun

real_decorator1 = partial(_pseudo_decor, argument="some_arg")
real_decorator2 = partial(_pseudo_decor, argument="some_other_arg")

@real_decorator1
def bar(*args, **kwargs):
    pass

>>> print(bar)
<function __main__.bar(*args, **kwargs)>

>>> bar(1,2,3, k="v", x="z")
decorator argument is some_arg
returned value is None

Solution 3:

I'd like to show an idea which is IMHO quite elegant. The solution proposed by t.dubrownik shows a pattern which is always the same: you need the three-layered wrapper regardless of what the decorator does.

So I thought this is a job for a meta-decorator, that is, a decorator for decorators. As a decorator is a function, it actually works as a regular decorator with arguments:

def parametrized(dec):
    def layer(*args, **kwargs):
        def repl(f):
            return dec(f, *args, **kwargs)
        return repl
    return layer

This can be applied to a regular decorator in order to add parameters. So for instance, say we have the decorator which doubles the result of a function:

def double(f):
    def aux(*xs, **kws):
        return 2 * f(*xs, **kws)
    return aux

@double
def function(a):
    return 10 + a

print function(3)    # Prints 26, namely 2 * (10 + 3)

With @parametrized we can build a generic @multiply decorator having a parameter

@parametrized
def multiply(f, n):
    def aux(*xs, **kws):
        return n * f(*xs, **kws)
    return aux

@multiply(2)
def function(a):
    return 10 + a

print function(3)    # Prints 26

@multiply(3)
def function_again(a):
    return 10 + a

print function(3)          # Keeps printing 26
print function_again(3)    # Prints 39, namely 3 * (10 + 3)

Conventionally the first parameter of a parametrized decorator is the function, while the remaining arguments will correspond to the parameter of the parametrized decorator.

An interesting usage example could be a type-safe assertive decorator:

import itertools as it

@parametrized
def types(f, *types):
    def rep(*args):
        for a, t, n in zip(args, types, it.count()):
            if type(a) is not t:
                raise TypeError('Value %d has not type %s. %s instead' %
                    (n, t, type(a))
                )
        return f(*args)
    return rep

@types(str, int)  # arg1 is str, arg2 is int
def string_multiply(text, times):
    return text * times

print(string_multiply('hello', 3))    # Prints hellohellohello
print(string_multiply(3, 3))          # Fails miserably with TypeError

A final note: here I'm not using functools.wraps for the wrapper functions, but I would recommend using it all the times.