Why use double indirection? or Why use pointers to pointers?
If you want to have a list of characters (a word), you can use char *word
If you want a list of words (a sentence), you can use char **sentence
If you want a list of sentences (a monologue), you can use char ***monologue
If you want a list of monologues (a biography), you can use char ****biography
If you want a list of biographies (a bio-library), you can use char *****biolibrary
If you want a list of bio-libraries (a ??lol), you can use char ******lol
... ...
yes, I know these might not be the best data structures
Usage example with a very very very boring lol
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
int wordsinsentence(char **x) {
int w = 0;
while (*x) {
w += 1;
x++;
}
return w;
}
int wordsinmono(char ***x) {
int w = 0;
while (*x) {
w += wordsinsentence(*x);
x++;
}
return w;
}
int wordsinbio(char ****x) {
int w = 0;
while (*x) {
w += wordsinmono(*x);
x++;
}
return w;
}
int wordsinlib(char *****x) {
int w = 0;
while (*x) {
w += wordsinbio(*x);
x++;
}
return w;
}
int wordsinlol(char ******x) {
int w = 0;
while (*x) {
w += wordsinlib(*x);
x++;
}
return w;
}
int main(void) {
char *word;
char **sentence;
char ***monologue;
char ****biography;
char *****biolibrary;
char ******lol;
//fill data structure
word = malloc(4 * sizeof *word); // assume it worked
strcpy(word, "foo");
sentence = malloc(4 * sizeof *sentence); // assume it worked
sentence[0] = word;
sentence[1] = word;
sentence[2] = word;
sentence[3] = NULL;
monologue = malloc(4 * sizeof *monologue); // assume it worked
monologue[0] = sentence;
monologue[1] = sentence;
monologue[2] = sentence;
monologue[3] = NULL;
biography = malloc(4 * sizeof *biography); // assume it worked
biography[0] = monologue;
biography[1] = monologue;
biography[2] = monologue;
biography[3] = NULL;
biolibrary = malloc(4 * sizeof *biolibrary); // assume it worked
biolibrary[0] = biography;
biolibrary[1] = biography;
biolibrary[2] = biography;
biolibrary[3] = NULL;
lol = malloc(4 * sizeof *lol); // assume it worked
lol[0] = biolibrary;
lol[1] = biolibrary;
lol[2] = biolibrary;
lol[3] = NULL;
printf("total words in my lol: %d\n", wordsinlol(lol));
free(lol);
free(biolibrary);
free(biography);
free(monologue);
free(sentence);
free(word);
}
Output:
total words in my lol: 243
One reason is you want to change the value of the pointer passed to a function as the function argument, to do this you require pointer to a pointer.
In simple words, Use **
when you want to preserve (OR retain change in) the Memory-Allocation or Assignment even outside of a function call. (So, Pass such function with double pointer arg.)
This may not be a very good example, but will show you the basic use:
#include <stdio.h>
#include <stdlib.h>
void allocate(int **p)
{
*p = (int *)malloc(sizeof(int));
}
int main()
{
int *p = NULL;
allocate(&p);
*p = 42;
printf("%d\n", *p);
free(p);
}
- Let’s say you have a pointer. Its value is an address.
- but now you want to change that address.
- you could. by doing
pointer1 = pointer2
, you give pointer1 the address of pointer2. but! if you do that within a function, and you want the result to persist after the function is done, you need do some extra work. you need a new pointer3 just to point to pointer1. pass pointer3 to the function.
here is an example. look at the output below first, to understand.
#include <stdio.h>
int main()
{
int c = 1;
int d = 2;
int e = 3;
int * a = &c;
int * b = &d;
int * f = &e;
int ** pp = &a; // pointer to pointer 'a'
printf("\n a's value: %x \n", a);
printf("\n b's value: %x \n", b);
printf("\n f's value: %x \n", f);
printf("\n can we change a?, lets see \n");
printf("\n a = b \n");
a = b;
printf("\n a's value is now: %x, same as 'b'... it seems we can, but can we do it in a function? lets see... \n", a);
printf("\n cant_change(a, f); \n");
cant_change(a, f);
printf("\n a's value is now: %x, Doh! same as 'b'... that function tricked us. \n", a);
printf("\n NOW! lets see if a pointer to a pointer solution can help us... remember that 'pp' point to 'a' \n");
printf("\n change(pp, f); \n");
change(pp, f);
printf("\n a's value is now: %x, YEAH! same as 'f'... that function ROCKS!!!. \n", a);
return 0;
}
void cant_change(int * x, int * z){
x = z;
printf("\n ----> value of 'a' is: %x inside function, same as 'f', BUT will it be the same outside of this function? lets see\n", x);
}
void change(int ** x, int * z){
*x = z;
printf("\n ----> value of 'a' is: %x inside function, same as 'f', BUT will it be the same outside of this function? lets see\n", *x);
}
Here is the output: (read this first)
a's value: bf94c204
b's value: bf94c208
f's value: bf94c20c
can we change a?, lets see
a = b
a's value is now: bf94c208, same as 'b'... it seems we can, but can we do it in a function? lets see...
cant_change(a, f);
----> value of 'a' is: bf94c20c inside function, same as 'f', BUT will it be the same outside of this function? lets see
a's value is now: bf94c208, Doh! same as 'b'... that function tricked us.
NOW! lets see if a pointer to a pointer solution can help us... remember that 'pp' point to 'a'
change(pp, f);
----> value of 'a' is: bf94c20c inside function, same as 'f', BUT will it be the same outside of this function? lets see
a's value is now: bf94c20c, YEAH! same as 'f'... that function ROCKS!!!.
Adding to Asha's response, if you use single pointer to the example bellow (e.g. alloc1() ) you will lose the reference to the memory allocated inside the function.
#include <stdio.h>
#include <stdlib.h>
void alloc2(int** p) {
*p = (int*)malloc(sizeof(int));
**p = 10;
}
void alloc1(int* p) {
p = (int*)malloc(sizeof(int));
*p = 10;
}
int main(){
int *p = NULL;
alloc1(p);
//printf("%d ",*p);//undefined
alloc2(&p);
printf("%d ",*p);//will print 10
free(p);
return 0;
}
The reason it occurs like this is that in alloc1
the pointer is passed in by value. So, when it is reassigned to the result of the malloc
call inside of alloc1
, the change does not pertain to code in a different scope.
I saw a very good example today, from this blog post, as I summarize below.
Imagine you have a structure for nodes in a linked list, which probably is
typedef struct node
{
struct node * next;
....
} node;
Now you want to implement a remove_if
function, which accepts a removal criterion rm
as one of the arguments and traverses the linked list: if an entry satisfies the criterion (something like rm(entry)==true
), its node will be removed from the list. In the end, remove_if
returns the head (which may be different from the original head) of the linked list.
You may write
for (node * prev = NULL, * curr = head; curr != NULL; )
{
node * const next = curr->next;
if (rm(curr))
{
if (prev) // the node to be removed is not the head
prev->next = next;
else // remove the head
head = next;
free(curr);
}
else
prev = curr;
curr = next;
}
as your for
loop. The message is, without double pointers, you have to maintain a prev
variable to re-organize the pointers, and handle the two different cases.
But with double pointers, you can actually write
// now head is a double pointer
for (node** curr = head; *curr; )
{
node * entry = *curr;
if (rm(entry))
{
*curr = entry->next;
free(entry);
}
else
curr = &entry->next;
}
You don't need a prev
now because you can directly modify what prev->next
pointed to.
To make things clearer, let's follow the code a little bit. During the removal:
- if
entry == *head
: it will be*head (==*curr) = *head->next
--head
now points to the pointer of the new heading node. You do this by directly changinghead
's content to a new pointer. - if
entry != *head
: similarly,*curr
is whatprev->next
pointed to, and now points toentry->next
.
No matter in which case, you can re-organize the pointers in a unified way with double pointers.