Can GCC not complain about undefined references?
Solution 1:
Yes, it is possible to avoid reporting undefined references - using --unresolved-symbols
linker option.
g++ mm.cpp -Wl,--unresolved-symbols=ignore-in-object-files
From man ld
--unresolved-symbols=method
Determine how to handle unresolved symbols. There are four possible values for method:
ignore-all Do not report any unresolved symbols. report-all Report all unresolved symbols. This is the default. ignore-in-object-files Report unresolved symbols that are contained in shared libraries, but ignore them if they come from regular object files. ignore-in-shared-libs Report unresolved symbols that come from regular object files, but ignore them if they come from shared libraries. This can be useful when creating a dynamic binary and it is known that all the shared libraries that it should be referencing are included on the linker's command line.
The behaviour for shared libraries on their own can also be controlled by the --[no-]allow-shlib-undefined option.
Normally the linker will generate an error message for each reported unresolved symbol but the option --warn-unresolved-symbols can change this to a warning.
Solution 2:
TL;DR It can not complain, but you don't want that. Your code will crash if you force the linker to ignore the problem. It'd be counterproductive.
Your code relies on the ancient C (pre-C99) allowing functions to be implicitly declared at their point of use. Your code is semantically equivalent to the following code:
void function()
{
int made_up_function_name(...); // The implicit declaration
made_up_function_name(); // Call the function
return;
}
The linker rightfully complains that the object file that contains the compiled function()
refers to a symbol that wasn't found anywhere else. You have to fix it by providing the implementation for made_up_function_name()
or by removing the nonsensical call. That's all there's to it. No linker-fiddling involved.
Solution 3:
If you declare the prototype of the function before using it , it shold compile. Anyway the error while linking will remain.
void made_up_function_name();
void function()
{
made_up_function_name();
return;
}
Solution 4:
And then there is this nastiness with the -D flag passed to GCC.
$cat undefined.c
void function()
{
made_up_function_name();
return;
}
int main(){
}
$gcc undefined.c -Dmade_up_function_name=atexit
$
Just imagine looking for the definition of made_up_function_name- it appears nowhere yet "does things" in the code. I can't think of a nice reason to do this exact thing in code.
The -D flag is a powerful tool for changing code at compile time.