'Multiclass-multioutput is not supported' Error in Scikit learn for Knn classifier
I have two variables X and Y.
The structure of X (i.e an np.array):
[[26777 24918 26821 ... -1 -1 -1]
[26777 26831 26832 ... -1 -1 -1]
[26777 24918 26821 ... -1 -1 -1]
...
[26811 26832 26813 ... -1 -1 -1]
[26830 26831 26832 ... -1 -1 -1]
[26830 26831 26832 ... -1 -1 -1]]
The structure of Y :
[[1252, 26777, 26831], [1252, 26777, 26831], [1252, 26777, 26831], [1252, 26777, 26831], [1252, 26777, 26831], [1252, 26777, 26831], [25197, 26777, 26781], [25197, 26777, 26781], [25197, 26777, 26781], [26764, 25803, 26781], [26764, 25803, 26781], [25197, 26777, 26781], [25197, 26777, 26781], [1252, 26777, 16172], [1252, 26777, 16172]]
The array in Y , example [1252, 26777, 26831] are three separate features.
I am using Knn classifier from scikit learn module
classifier = KNeighborsClassifier(n_neighbors=3)
classifier.fit(X,Y)
predictions = classifier.predict(X)
print(accuracy_score(Y,predictions))
But I get an error saying :
ValueError: multiclass-multioutput is not supported
I guess the structure of 'Y' is not supported , what changes do I make in order for the program to execute?
Input :
Deluxe Single room with sea view
Expected Output :
c_class = Deluxe
c_occ = single
c_view = sea
Solution 1:
As mentioned in the error, KNN
does not support multi-output regression/classification.
For your problem, you need MultiOutputClassifier()
.
from sklearn.multioutput import MultiOutputClassifier
knn = KNeighborsClassifier(n_neighbors=3)
classifier = MultiOutputClassifier(knn, n_jobs=-1)
classifier.fit(X,Y)
Working example:
>>> from sklearn.feature_extraction.text import TfidfVectorizer
>>> corpus = [
... 'This is the first document.',
... 'This document is the second document.',
... 'And this is the third one.',
... 'Is this the first document?',
... ]
>>> vectorizer = TfidfVectorizer()
>>> X = vectorizer.fit_transform(corpus)
>>> Y = [[124323,1234132,1234],[124323,4132,14],[1,4132,1234],[1,4132,14]]
>>> from sklearn.multioutput import MultiOutputClassifier
>>> from sklearn.neighbors import KNeighborsClassifier
>>> knn = KNeighborsClassifier(n_neighbors=3)
>>> classifier = MultiOutputClassifier(knn, n_jobs=-1)
>>> classifier.fit(X,Y)
>>> predictions = classifier.predict(X)
array([[124323, 4132, 14],
[124323, 4132, 14],
[ 1, 4132, 1234],
[124323, 4132, 14]])
>>> classifier.score(X,np.array(Y))
0.5
>>> test_data = ['I want to test this']
>>> classifier.predict(vectorizer.transform(test_data))
array([[124323, 4132, 14]])