Write a non-recursive traversal of a Binary Search Tree using constant space and O(n) run time
I didn't think it through entirely, but i think it's possible as long as you're willing to mess up your tree in the process.
Every Node has 2 pointers, so it could be used to represent a doubly-linked list. Suppose you advance from Root to Root.Left=Current. Now Root.Left pointer is useless, so assign it to be Current.Right and proceed to Current.Left. By the time you reach leftmost child, you'll have a linked list with trees hanging off of some nodes. Now iterate over that, repeating the process for every tree you encounter as you go
EDIT: thought it through. Here's the algorithm that prints in-order:
void traverse (Node root) {
traverse (root.left, root);
}
void traverse (Node current, Node parent) {
while (current != null) {
if (parent != null) {
parent.left = current.right;
current.right = parent;
}
if (current.left != null) {
parent = current;
current = current.left;
} else {
print(current);
current = current.right;
parent = null;
}
}
}
How about Morris Inorder tree traversal? Its based on the notion of threaded trees and it modifies the tree, but reverts it back when its done.
Linkie: http://geeksforgeeks.org/?p=6358
Doesn't use any extra space.
If you are using a downwards pointer based tree and don't have a parent pointer or some other memory it is impossible to traverse in constant space.
It is possible if your binary tree is in an array instead of a pointer-based object structure. But then you can access any node directly. Which is a kind of cheating ;-)
Here's a shorter version iluxa's original answer. It runs exactly the same node manipulation and printing steps, in exactly the same order — but in a simplified manner [1]:
void traverse (Node n) {
while (n) {
Node next = n.left;
if (next) {
n.left = next.right;
next.right = n;
n = next;
} else {
print(n);
n = n.right;
}
}
}
[1] Plus, it even works when the tree root node has no left child.