Integrate $e^{ax}\sin(bx)?$
Is there a general formula for finding the primitive of $$e^{ax}\sin(bx)?$$
I've done this manually with $a=9$ and $b=4$ using Euler's formulas. But it takes a bit of time. Is there a pattern here?
Solution 1:
There is a pattern. Differentiating a function of the form $e^{ax}\sin (bx)$ yields a linear combination of a function of the same form, and a function $e^{ax}\cos (bx)$. The analogous property holds for functions $e^{ax}\cos (bx)$. So the primitive of $e^{ax}\sin (bx)$ will be a linear combination of $e^{ax}\sin (bx)$ and $e^{ax}\cos (bx)$ (plus a constant).
It remains to find the coefficients.
$$\begin{align} \frac{d}{dx}\left(e^{ax}(m\sin (bx) + n\cos (bx)\right) &= e^{ax}\left(a\bigl(m\sin(bx) + n\cos(bx)\bigr) + \bigl(bm\cos(bx) - bn\sin(bx)\bigr)\right)\\ &= e^{ax}\left((am - bn)\sin (bx) + (an+bm)\cos(bx)\right) \end{align}$$
Now solve the linear system
$$\begin{align} am - bn &= 1\\ an + bm &= 0. \end{align}$$
Solution 2:
Notice that $$\sin(bx)=\mathrm{Im}(e^{ibx})$$
so we need just take the imaginary part of this antiderivative
$$\int e^{ax}e^{ibx}dx=\frac{1}{a+ib}e^{(a+ib)x}+C$$
Solution 3:
Hint Integration by parts
$$\int u \ dv =uv-\int v \ du $$
Make substition $$u=\sin(bx)\ \Rightarrow \ du=b\cos (bx) \ dx$$ and $$\ dv=e^{ax} \ dx \Rightarrow v= \frac{e^{ax}}{a}$$ So $$\int e^{ax} \sin(bx) \ dx=\frac{e^{ax}}{a}\sin(bx)-\frac ba\int e^{ax}\cos bx \ dx$$
Then another integration by parts for $\int e^{ax}\cos bx \ dx$ . I think you can do the rest of it.