Byte Array and Int conversion in Java

Solution 1:

Your methods should be (something like)

public static int byteArrayToInt(byte[] b) 
{
    return   b[3] & 0xFF |
            (b[2] & 0xFF) << 8 |
            (b[1] & 0xFF) << 16 |
            (b[0] & 0xFF) << 24;
}

public static byte[] intToByteArray(int a)
{
    return new byte[] {
        (byte) ((a >> 24) & 0xFF),
        (byte) ((a >> 16) & 0xFF),   
        (byte) ((a >> 8) & 0xFF),   
        (byte) (a & 0xFF)
    };
}

These methods were tested with the following code :

Random rand = new Random(System.currentTimeMillis());
byte[] b;
int a, v;
for (int i=0; i<10000000; i++) {
    a = rand.nextInt();
    b = intToByteArray(a);
    v = byteArrayToInt(b);
    if (a != v) {
        System.out.println("ERR! " + a + " != " + Arrays.toString(b) + " != " + v);
    }
}
System.out.println("Done!");

Solution 2:

That's a lot of work for:

public static int byteArrayToLeInt(byte[] b) {
    final ByteBuffer bb = ByteBuffer.wrap(b);
    bb.order(ByteOrder.LITTLE_ENDIAN);
    return bb.getInt();
}

public static byte[] leIntToByteArray(int i) {
    final ByteBuffer bb = ByteBuffer.allocate(Integer.SIZE / Byte.SIZE);
    bb.order(ByteOrder.LITTLE_ENDIAN);
    bb.putInt(i);
    return bb.array();
}

This method uses the Java ByteBuffer and ByteOrder functionality in the java.nio package. This code should be preferred where readability is required. It should also be very easy to remember.

I've shown Little Endian byte order here. To create a Big Endian version you can simply leave out the call to order(ByteOrder).


In code where performance is higher priority than readability (about 10x as fast):

public static int byteArrayToLeInt(byte[] encodedValue) {
    int value = (encodedValue[3] << (Byte.SIZE * 3));
    value |= (encodedValue[2] & 0xFF) << (Byte.SIZE * 2);
    value |= (encodedValue[1] & 0xFF) << (Byte.SIZE * 1);
    value |= (encodedValue[0] & 0xFF);
    return value;
}

public static byte[] leIntToByteArray(int value) {
    byte[] encodedValue = new byte[Integer.SIZE / Byte.SIZE];
    encodedValue[3] = (byte) (value >> Byte.SIZE * 3);
    encodedValue[2] = (byte) (value >> Byte.SIZE * 2);   
    encodedValue[1] = (byte) (value >> Byte.SIZE);   
    encodedValue[0] = (byte) value;
    return encodedValue;
}

Just reverse the byte array index to count from zero to three to create a Big Endian version of this code.


Notes:

  • In Java 8 you can also make use of the Integer.BYTES constant, which is more succinct than Integer.SIZE / Byte.SIZE.

Solution 3:

You're swapping endianness between your two methods. You have intToByteArray(int a) assigning the low-order bits into ret[0], but then byteArrayToInt(byte[] b) assigns b[0] to the high-order bits of the result. You need to invert one or the other, like:

public static byte[] intToByteArray(int a)
{
    byte[] ret = new byte[4];
    ret[3] = (byte) (a & 0xFF);   
    ret[2] = (byte) ((a >> 8) & 0xFF);   
    ret[1] = (byte) ((a >> 16) & 0xFF);   
    ret[0] = (byte) ((a >> 24) & 0xFF);
    return ret;
}

Solution 4:

You can also use BigInteger for variable length bytes. You can convert it to Long, Integer or Short, whichever suits your needs.

new BigInteger(bytes).intValue();

or to denote polarity:

new BigInteger(1, bytes).intValue();

To get bytes back just:

new BigInteger(bytes).toByteArray()