Interweaving two numpy arrays

Assume the following arrays are given:

a = array([1,3,5])
b = array([2,4,6])

How would one interweave them efficiently so that one gets a third array like this

c = array([1,2,3,4,5,6])

It can be assumed that length(a)==length(b).


I like Josh's answer. I just wanted to add a more mundane, usual, and slightly more verbose solution. I don't know which is more efficient. I expect they will have similar performance.

import numpy as np
a = np.array([1,3,5])
b = np.array([2,4,6])

c = np.empty((a.size + b.size,), dtype=a.dtype)
c[0::2] = a
c[1::2] = b

I thought it might be worthwhile to check how the solutions performed in terms of performance. And this is the result:

enter image description here

This clearly shows that the most upvoted and accepted answer (Pauls answer) is also the fastest option.

The code was taken from the other answers and from another Q&A:

# Setup
import numpy as np

def Paul(a, b):
    c = np.empty((a.size + b.size,), dtype=a.dtype)
    c[0::2] = a
    c[1::2] = b
    return c

def JoshAdel(a, b):
    return np.vstack((a,b)).reshape((-1,),order='F')

def xioxox(a, b):
    return np.ravel(np.column_stack((a,b)))

def Benjamin(a, b):
    return np.vstack((a,b)).ravel([-1])

def andersonvom(a, b):
    return np.hstack( zip(a,b) )

def bhanukiran(a, b):
    return np.dstack((a,b)).flatten()

def Tai(a, b):
    return np.insert(b, obj=range(a.shape[0]), values=a)

def Will(a, b):
    return np.ravel((a,b), order='F')

# Timing setup
timings = {Paul: [], JoshAdel: [], xioxox: [], Benjamin: [], andersonvom: [], bhanukiran: [], Tai: [], Will: []}
sizes = [2**i for i in range(1, 20, 2)]

# Timing
for size in sizes:
    func_input1 = np.random.random(size=size)
    func_input2 = np.random.random(size=size)
    for func in timings:
        res = %timeit -o func(func_input1, func_input2)
        timings[func].append(res)

%matplotlib notebook

import matplotlib.pyplot as plt
import numpy as np

fig = plt.figure(1)
ax = plt.subplot(111)

for func in timings:
    ax.plot(sizes, 
            [time.best for time in timings[func]], 
            label=func.__name__)  # you could also use "func.__name__" here instead
ax.set_xscale('log')
ax.set_yscale('log')
ax.set_xlabel('size')
ax.set_ylabel('time [seconds]')
ax.grid(which='both')
ax.legend()
plt.tight_layout()

Just in case you have numba available you could also use that to create a function:

import numba as nb

@nb.njit
def numba_interweave(arr1, arr2):
    res = np.empty(arr1.size + arr2.size, dtype=arr1.dtype)
    for idx, (item1, item2) in enumerate(zip(arr1, arr2)):
        res[idx*2] = item1
        res[idx*2+1] = item2
    return res

It could be slightly faster than the other alternatives:

enter image description here


Here is a one-liner:

c = numpy.vstack((a,b)).reshape((-1,),order='F')

Here is a simpler answer than some of the previous ones

import numpy as np
a = np.array([1,3,5])
b = np.array([2,4,6])
inter = np.ravel(np.column_stack((a,b)))

After this inter contains:

array([1, 2, 3, 4, 5, 6])

This answer also appears to be marginally faster:

In [4]: %timeit np.ravel(np.column_stack((a,b)))
100000 loops, best of 3: 6.31 µs per loop

In [8]: %timeit np.ravel(np.dstack((a,b)))
100000 loops, best of 3: 7.14 µs per loop

In [11]: %timeit np.vstack((a,b)).ravel([-1])
100000 loops, best of 3: 7.08 µs per loop