Evaluating the integral $\int_0^\infty \frac{\sin x} x \,\mathrm dx = \frac \pi 2$?
Solution 1:
I believe this can also be solved using double integrals.
It is possible (if I remember correctly) to justify switching the order of integration to give the equality:
$$\int_{0}^{\infty} \Bigg(\int_{0}^{\infty} e^{-xy} \sin x \,dy \Bigg)\, dx = \int_{0}^{\infty} \Bigg(\int_{0}^{\infty} e^{-xy} \sin x \,dx \Bigg)\,dy$$ Notice that $$\int_{0}^{\infty} e^{-xy} \sin x\,dy = \frac{\sin x}{x}$$
This leads us to
$$\int_{0}^{\infty} \Big(\frac{\sin x}{x} \Big) \,dx = \int_{0}^{\infty} \Bigg(\int_{0}^{\infty} e^{-xy} \sin x \,dx \Bigg)\,dy$$ Now the right hand side can be found easily, using integration by parts.
$$\begin{align*} I &= \int e^{-xy} \sin x \,dx = -e^{-xy}{\cos x} - y \int e^{-xy} \cos x \, dx\\ &= -e^{-xy}{\cos x} - y \Big(e^{-xy}\sin x + y \int e^{-xy} \sin x \,dx \Big)\\ &= \frac{-ye^{-xy}\sin x - e^{-xy}\cos x}{1+y^2}. \end{align*}$$ Thus $$\int_{0}^{\infty} e^{-xy} \sin x \,dx = \frac{1}{1+y^2}$$ Thus $$\int_{0}^{\infty} \Big(\frac{\sin x}{x} \Big) \,dx = \int_{0}^{\infty}\frac{1}{1+y^2}\,dy = \frac{\pi}{2}.$$
Solution 2:
Here's another way of finishing off Derek's argument. He proves $$\int_0^{\pi/2}\frac{\sin(2n+1)x}{\sin x}dx=\frac\pi2.$$ Let $$I_n=\int_0^{\pi/2}\frac{\sin(2n+1)x}{x}dx= \int_0^{(2n+1)\pi/2}\frac{\sin x}{x}dx.$$ Let $$D_n=\frac\pi2-I_n=\int_0^{\pi/2}f(x)\sin(2n+1)x\ dx$$ where $$f(x)=\frac1{\sin x}-\frac1x.$$ We need the fact that if we define $f(0)=0$ then $f$ has a continuous derivative on the interval $[0,\pi/2]$. Integration by parts yields $$D_n=\frac1{2n+1}\int_0^{\pi/2}f'(x)\cos(2n+1)x\ dx=O(1/n).$$ Hence $I_n\to\pi/2$ and we conclude that $$\int_0^\infty\frac{\sin x}{x}dx=\lim_{n\to\infty}I_n=\frac\pi2.$$