What distribution do you get from this broken random shuffle?
Solution 1:
An Empirical Approach.
Let's implement the erroneous algorithm in Mathematica:
p = 10; (* Range *)
s = {}
For[l = 1, l <= 30000, l++, (*Iterations*)
a = Range[p];
For[k = 1, k <= p, k++,
i = RandomInteger[{1, p}];
temp = a[[k]];
a[[k]] = a[[i]];
a[[i]] = temp
];
AppendTo[s, a];
]
Now get the number of times each integer is in each position:
r = SortBy[#, #[[1]] &] & /@ Tally /@ Transpose[s]
Let's take three positions in the resulting arrays and plot the frequency distribution for each integer in that position:
For position 1 the freq distribution is:
For position 5 (middle)
And for position 10 (last):
and here you have the distribution for all positions plotted together:
Here you have a better statistics over 8 positions:
Some observations:
- For all positions the probability of "1" is the same (1/n).
- The probability matrix is symmetrical with respect to the big anti-diagonal
- So, the probability for any number in the last position is also uniform (1/n)
You may visualize those properties looking at the starting of all lines from the same point (first property) and the last horizontal line (third property).
The second property can be seen from the following matrix representation example, where the rows are the positions, the columns are the occupant number, and the color represents the experimental probability:
For a 100x100 matrix:
Edit
Just for fun, I calculated the exact formula for the second diagonal element (the first is 1/n). The rest can be done, but it's a lot of work.
h[n_] := (n-1)/n^2 + (n-1)^(n-2) n^(-n)
Values verified from n=3 to 6 ( {8/27, 57/256, 564/3125, 7105/46656} )
Edit
Working out a little the general explicit calculation in @wnoise answer, we can get a little more info.
Replacing 1/n by p[n], so the calculations are hold unevaluated, we get for example for the first part of the matrix with n=7 (click to see a bigger image):
Which, after comparing with results for other values of n, let us identify some known integer sequences in the matrix:
{{ 1/n, 1/n , ...},
{... .., A007318, ....},
{... .., ... ..., ..},
... ....,
{A129687, ... ... ... ... ... ... ..},
{A131084, A028326 ... ... ... ... ..},
{A028326, A131084 , A129687 ... ....}}
You may find those sequences (in some cases with different signs) in the wonderful http://oeis.org/
Solving the general problem is more difficult, but I hope this is a start
Solution 2:
The "common mistake" you mention is shuffling by random transpositions. This problem was studied in full detail by Diaconis and Shahshahani in Generating a random permutation with random transpositions (1981). They do a complete analysis of stopping times and convergence to uniformity. If you cannot get a link to the paper, then please send me an e-mail and I can forward you a copy. It's actually a fun read (as are most of Persi Diaconis's papers).
If the array has repeated entries, then the problem is slightly different. As a shameless plug, this more general problem is addressed by myself, Diaconis and Soundararajan in Appendix B of A Rule of Thumb for Riffle Shuffling (2011).
Solution 3:
Let's say
a = 1/N
b = 1-a
- Bi(k) is the probability matrix after
i
swaps for thek
th element. i.e the answer to the question "where isk
afteri
swaps?". For example B0(3) =(0 0 1 0 ... 0)
and B1(3) =(a 0 b 0 ... 0)
. What you want is BN(k) for every k. - Ki is an NxN matrix with 1s in the i-th column and i-th row, zeroes everywhere else, e.g:
- Ii is the identity matrix but with the element x=y=i zeroed. E.g for i=2:
- Ai is
Then,
But because BN(k=1..N) forms the identity matrix, the probability that any given element i will at the end be at position j is given by the matrix element (i,j) of the matrix:
For example, for N=4:
As a diagram for N = 500 (color levels are 100*probability):
The pattern is the same for all N>2:
- The most probable ending position for k-th element is k-1.
- The least probable ending position is k for k < N*ln(2), position 1 otherwise
Solution 4:
I knew I had seen this question before...
" why does this simple shuffle algorithm produce biased results? what is a simple reason? " has a lot of good stuff in the answers, especially a link to a blog by Jeff Atwood on Coding Horror.
As you may have already guessed, based on the answer by @belisarius, the exact distribution is highly dependent on the number of elements to be shuffled. Here's Atwood's plot for a 6-element deck: