Finding $\int_0^{\infty}xe^{-\lambda x} \, dx$
How to integrate:
$$\int_0^\infty x \, \lambda e^{-\lambda x} \, dx$$
I tried using integration by parts:
Let $u = x$ and $dv = \lambda e^{-\lambda x} \, dx$
Then $du = dx$
And $v = - \lambda e ^{-\lambda x}$
Correct so far?
Then
$$\begin{aligned} uv - \int v \, du &= -\lambda x e^{-\lambda x} - \int (- \lambda e^{- \lambda x}) dx \\ &= -\lambda x e^{-\lambda x} - \lambda e^{-\lambda x} \end{aligned}$$
The correct answer from lecture notes
UPDATE 2
Let $u=\lambda x$ and $dv = e^{-\lambda x} dx$
Then $du = \lambda \, dx$
$$dv = e^{-\lambda x} \, dx$$
Let $y = -\lambda x$
Then $dy = -\lambda \, dx$
So $dx = -\frac{1}{\lambda} dy$
$$\begin{aligned} v &= \int e^u \cdot - \frac{1}{\lambda} du \\ &= - \frac{1}{\lambda} e^{-\lambda x} \end{aligned}$$
But here I seem to have an extra $- \frac{1}{\lambda}$ in $v$?
If I continue using integration by parts, I get:
$$-x e^{-\lambda x} + \color{red}{\frac{1}{\lambda}} \int e^{-\lambda x} \, dx$$
Solution 1:
Answer in not just $ -xe^{-\lambda x} $. Correct answer with limits is $ [-xe^{-\lambda x}]^{\infty} _0$ + ${\int^{\infty}_0e^{-\lambda x}dx}$ which turns out to be $1/\lambda.$
Explanation:Applying integration by parts (the correct way)
$${\int{x\lambda}e^{-\lambda x}dx} = {}\lambda x {\int e^{-\lambda x}dx} - {\lambda}{\int}[{d(x)/dx}. {\int e^{-\lambda x}}]dx$$
Now apply limit and calculate $$ = [-xe^{-\lambda x}]^{\infty} _0 + {\int^{\infty}_0e^{-\lambda x}dx} $$ $$=1/\lambda$$
Solution 2:
How to integrate:
$$\int_0^\infty x \, \lambda e^{-\lambda x} \, dx \Longrightarrow -\frac{1}{\lambda}\int_0^\infty u\, e^{u} \, \Longrightarrow (-\frac{1}{\lambda})e^u(u + 1) + C \Longrightarrow -\frac{1}{\lambda}(e^{-\lambda x}(\lambda x - 1) + C)$$
1) Choose $u = -\lambda x$. $-du = \lambda dx$. No need for integration by parts so early.