Surprising identities / equations
This one by Ramanujan gives me the goosebumps:
$$ \frac{2\sqrt{2}}{9801} \sum_{k=0}^\infty \frac{ (4k)! (1103+26390k) }{ (k!)^4 396^{4k} } = \frac1{\pi}. $$
P.S. Just to make this more intriguing, define the fundamental unit $U_{29} = \frac{5+\sqrt{29}}{2}$ and fundamental solutions to Pell equations,
$$\big(U_{29}\big)^3=70+13\sqrt{29},\quad \text{thus}\;\;\color{blue}{70}^2-29\cdot\color{blue}{13}^2=-1$$
$$\big(U_{29}\big)^6=9801+1820\sqrt{29},\quad \text{thus}\;\;\color{blue}{9801}^2-29\cdot1820^2=1$$
$$2^6\left(\big(U_{29}\big)^6+\big(U_{29}\big)^{-6}\right)^2 =\color{blue}{396^4}$$
then we can see those integers all over the formula as,
$$\frac{2 \sqrt 2}{\color{blue}{9801}} \sum_{k=0}^\infty \frac{(4k)!}{k!^4} \frac{29\cdot\color{blue}{70\cdot13}\,k+1103}{\color{blue}{(396^4)}^k} = \frac{1}{\pi} $$
Nice, eh?
${1\over 2} < \left\lfloor \mathrm{mod}\left(\left\lfloor {y \over 17} \right\rfloor 2^{-17 \lfloor x \rfloor - \mathrm{mod}(\lfloor y\rfloor, 17)},2\right)\right\rfloor$
The above is the most interesting inequality in mathematics. If you plot it so that areas satisfying the inequality are shaded, this is what you get:
This is known as Tupper's self referential formula.