Closed set as a countable intersection of open sets
Solution 1:
Let $A\subseteq X$ be closed. For all $n\in \mathbb N$ define $$U_n=\bigcup _{a\in A} B(a,\frac{1}{n}).$$ $U_n$ is open as a union of open balls. We prove that $A=\bigcap _{n\in \mathbb N} U_n$.
Clearly $A \subseteq \bigcap _{n\in \mathbb N} U_n$.
To prove $A \supseteq \bigcap _{n\in \mathbb N} U_n$ we take $x\notin A$ and show that $x\notin \bigcap U_n$.
Since $A$ is closed, $A^C$ is open, therefore $\exists n \in \mathbb N$ such that $B(x,\frac{1}{n}) \cap A=\emptyset$. That is, for all $a\in A$: $a\notin B(x,\frac{1}{n})$; and thus for all $a\in A$: $x\notin B(a,\frac{1}{n}) \Longrightarrow x\notin \bigcup_{a\in A} B(a,\frac{1}{n}) \Longrightarrow x\notin U_n \Longrightarrow x\notin \bigcap U_n$.
Solution 2:
Hint: Let $A\subseteq X$ be closed. For $\epsilon > 0$ let $$ U_\epsilon(A) = \{x \in X \mid \def\dist{\mathop{\rm dist}}\dist(x,A) < \epsilon \}$$ where $\dist(x, A) := \inf_{y \in A} d(x,y)$. What can you say about the sets $U_\epsilon(A)$, what is $\bigcap_{\epsilon > 0} U_\epsilon(A)$?
Solution 3:
Let $D(A,\varepsilon)=\left\{ y\in M | d(A,y)<\varepsilon \right\}$, where $d(A,y)=\inf \left\{ d(z,y)|z\in A \right\}$. This set is open .Define a sequence of $\varepsilon$ as $\varepsilon_{n}=\frac{1}{n}$. Claim $A=\cap_{n=1}^{\infty}D(A,\varepsilon_{n})$. Proof: If $x\in A$, then $d(A,x)=0$ and so $x \in D(A,\varepsilon_{n})$ for all $n\in \mathbb{N}$ $\Rightarrow$ $A\subset \cap_{n=1}^{\infty}D(A,\varepsilon_{n})$. Conversely if $x\in \cap_{n=1}^{\infty}D(A,\varepsilon_{n})$ then $x\in D(A,\varepsilon_{n})$ for all $n\in \mathbb{N}$ $\Rightarrow$ $\forall \varepsilon>0$ $D(x,\varepsilon)\cap A\setminus \left\{ x \right\}\neq \emptyset$ and so $x$ is an accumulation point of $A$. $A$ is, however, closed so contains all its accumulation points, so $x\in A$ $\Rightarrow$ $\cap_{n=1}^{\infty}D(A,\varepsilon_{n})\subset A$.