Pandas/Python: Set value of one column based on value in another column

Solution 1:

one way to do this would be to use indexing with .loc.

Example

In the absence of an example dataframe, I'll make one up here:

import numpy as np
import pandas as pd

df = pd.DataFrame({'c1': list('abcdefg')})
df.loc[5, 'c1'] = 'Value'

>>> df
      c1
0      a
1      b
2      c
3      d
4      e
5  Value
6      g

Assuming you wanted to create a new column c2, equivalent to c1 except where c1 is Value, in which case, you would like to assign it to 10:

First, you could create a new column c2, and set it to equivalent as c1, using one of the following two lines (they essentially do the same thing):

df = df.assign(c2 = df['c1'])
# OR:
df['c2'] = df['c1']

Then, find all the indices where c1 is equal to 'Value' using .loc, and assign your desired value in c2 at those indices:

df.loc[df['c1'] == 'Value', 'c2'] = 10

And you end up with this:

>>> df
      c1  c2
0      a   a
1      b   b
2      c   c
3      d   d
4      e   e
5  Value  10
6      g   g

If, as you suggested in your question, you would perhaps sometimes just want to replace the values in the column you already have, rather than create a new column, then just skip the column creation, and do the following:

df['c1'].loc[df['c1'] == 'Value'] = 10
# or:
df.loc[df['c1'] == 'Value', 'c1'] = 10

Giving you:

>>> df
      c1
0      a
1      b
2      c
3      d
4      e
5     10
6      g

Solution 2:

You can use np.where() to set values based on a specified condition:

#df
   c1  c2  c3
0   4   2   1
1   8   7   9
2   1   5   8
3   3   3   5
4   3   6   8

Now change values (or set) in column ['c2'] based on your condition.

df['c2'] = np.where(df.c1 == 8,'X', df.c3)

   c1  c2  c3
0   4   1   1
1   8   X   9
2   1   8   8
3   3   5   5
4   3   8   8