Mutate multiple variable to create multiple new variables
Because you are operating on column names, you need to use mutate_at
rather than mutate_if
which uses the values within columns
tb %>% mutate_at(vars(starts_with("y")), funs(. - z))
#> # A tibble: 3 x 5
#> x y1 y2 y3 z
#> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 1 0 2 4 2
#> 2 2 -2 -1 0 3
#> 3 3 5 3 1 1
To create new columns, instead of overwriting existing ones, we can give name to funs
# add suffix
tb %>% mutate_at(vars(starts_with("y")), funs(mod = . - z))
#> # A tibble: 3 x 8
#> x y1 y2 y3 z y1_mod y2_mod y3_mod
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 1 2 4 6 2 0 2 4
#> 2 2 1 2 3 3 -2 -1 0
#> 3 3 6 4 2 1 5 3 1
# remove suffix, add prefix
tb %>%
mutate_at(vars(starts_with("y")), funs(mod = . - z)) %>%
rename_at(vars(ends_with("_mod")), funs(paste("mod", gsub("_mod", "", .), sep = "_")))
#> # A tibble: 3 x 8
#> x y1 y2 y3 z mod_y1 mod_y2 mod_y3
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 1 2 4 6 2 0 2 4
#> 2 2 1 2 3 3 -2 -1 0
#> 3 3 6 4 2 1 5 3 1
Edit: In dplyr 0.8.0
or higher versions, funs()
will be deprecated (source1 & source2), need to use list()
instead
tb %>% mutate_at(vars(starts_with("y")), list(~ . - z))
#> # A tibble: 3 x 5
#> x y1 y2 y3 z
#> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 1 0 2 4 2
#> 2 2 -2 -1 0 3
#> 3 3 5 3 1 1
tb %>% mutate_at(vars(starts_with("y")), list(mod = ~ . - z))
#> # A tibble: 3 x 8
#> x y1 y2 y3 z y1_mod y2_mod y3_mod
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 1 2 4 6 2 0 2 4
#> 2 2 1 2 3 3 -2 -1 0
#> 3 3 6 4 2 1 5 3 1
tb %>%
mutate_at(vars(starts_with("y")), list(mod = ~ . - z)) %>%
rename_at(vars(ends_with("_mod")), list(~ paste("mod", gsub("_mod", "", .), sep = "_")))
#> # A tibble: 3 x 8
#> x y1 y2 y3 z mod_y1 mod_y2 mod_y3
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 1 2 4 6 2 0 2 4
#> 2 2 1 2 3 3 -2 -1 0
#> 3 3 6 4 2 1 5 3 1
Edit 2: dplyr
1.0.0+ has across()
function which simplifies this task even further
Basic usage
across()
has two primary arguments:
- The first argument,
.cols
, selects the columns you want to operate on. It uses tidy selection (likeselect()
) so you can pick variables by position, name, and type.
- The second argument,
.fns
, is a function or list of functions to apply to each column. This can also be a purrr style formula (or list of formulas) like~ .x / 2
. (This argument is optional, and you can omit it if you just want to get the underlying data; you'll see that technique used invignette("rowwise")
.)
# Control how the names are created with the `.names` argument which
# takes a [glue](http://glue.tidyverse.org/) spec:
tb %>%
mutate(
across(starts_with("y"), ~ .x - z, .names = "mod_{col}")
)
#> # A tibble: 3 x 8
#> x y1 y2 y3 z mod_y1 mod_y2 mod_y3
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 1 2 4 6 2 0 2 4
#> 2 2 1 2 3 3 -2 -1 0
#> 3 3 6 4 2 1 5 3 1
tb %>%
mutate(
across(num_range(prefix = "y", range = 1:3), ~ .x - z, .names = "mod_{col}")
)
#> # A tibble: 3 x 8
#> x y1 y2 y3 z mod_y1 mod_y2 mod_y3
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 1 2 4 6 2 0 2 4
#> 2 2 1 2 3 3 -2 -1 0
#> 3 3 6 4 2 1 5 3 1
### Multiple functions
tb %>%
mutate(
across(c(matches("x"), contains("z")), ~ max(.x, na.rm = TRUE), .names = "max_{col}"),
across(c(y1:y3), ~ .x - z, .names = "mod_{col}")
)
#> # A tibble: 3 x 10
#> x y1 y2 y3 z max_x max_z mod_y1 mod_y2 mod_y3
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 1 2 4 6 2 3 3 0 2 4
#> 2 2 1 2 3 3 3 3 -2 -1 0
#> 3 3 6 4 2 1 3 3 5 3 1
Created on 2018-10-29 by the reprex package (v0.2.1)