Calculation of $x$ in $x \lfloor x\lfloor x\lfloor x\rfloor\rfloor\rfloor = 88$
Hint
Let $x=\frac p q\in[k,k+1)$ irreductible and positive so $88\times \frac q p\in\mathbb N$ hence $$p\in\{1,2,4,8,11,22,44,88\}$$ and we have
$$k^4\leq x \lfloor x\lfloor x\lfloor x\rfloor\rfloor\rfloor = 88\leq (k+1)^4$$ so $k=3$ and then what's the possible values of $x$? Repeat the same reasoning for $x$ negative.
Through guess and check
$x=\dfrac{22}{7}$
We know apriori, $x\approx 3.16 \Longrightarrow \lfloor x\lfloor x\lfloor x\rfloor\rfloor\rfloor = 28$, so setting $k=28$ yields $x=22/7$
You can verify this yourself:
$$
\tfrac{22}{7}\lfloor\tfrac{22}{7}\lfloor \tfrac{22}{7}\lfloor \tfrac{22}{7}\rfloor\rfloor\rfloor =88
$$
If $0\le x<3$, then the expression is $<3^4<88$. So in the positive case, $k=\lfloor x\lfloor x\lfloor x\rfloor\rfloor\rfloor\ge 27$ and also $k=\frac{88}x\le \frac{88}3$, i.e. $k\in\{27,28,29\}$. Trying $x=\frac{88}{28}=\frac{22}{7}$ we verify that we have found a solution, whereas $\frac{88}{27}$ and $\frac{88}{29}$ don't work. (Since $x\lfloor x\lfloor x\lfloor x\rfloor\rfloor\rfloor$ is strictly decreasing (in the domain $x\ge1$) we might not even fully test other values once we have found or otherwise guessed a solution).
To deal with negative $x$, we might substitue $x$ with $-y$ and investigate $$y\lceil y\lceil y \lceil y\rceil\rceil\rceil=88$$ with $y>0$ instead. Once again, for $0<y\le 3$, the left hand side is $\le 81<88$, hence $y>3$, but then the left hand side is $\ge 64 y>192>88$.