In an abelian group, the elements of finite order form a subgroup.

Let $U$ be the set of all elements of finite order.

  • The neutral element $1$ has order 1. So $1\in U$.
  • Let $g,h\in U$. Then there are positive integers $n,m \geq 1$ with $g^n = 1$ and $h^m = 1$. So $$(gh)^{nm} \overset{gh = hg}{=} g^{nm} h^{nm} = (g^n)^m (h^m)^n = 1^m 1^n = 1.$$ Hence $\operatorname{ord}(gh) \le nm$ and therefore $gh \in U$.
  • Let $g\in U$. Then there is a positive integer $n$ with $g^n = 1$. Multiplication with $(g^{-1})^n$ yields $$\underbrace{(g^{-1})^n g^n}_{=1} = (g^{-1})^n.$$ So $\operatorname{ord}(g^{-1})\le n$ and $g^{-1}\in U$.

Therefore, $U$ is a subgroup.


The start: let $a^m=b^n=1$. Then $(ab)^{mn}=1$.