Can a lambda function call itself recursively in Python?

The only way I can think of to do this amounts to giving the function a name:

fact = lambda x: 1 if x == 0 else x * fact(x-1)

or alternately, for earlier versions of python:

fact = lambda x: x == 0 and 1 or x * fact(x-1)

Update: using the ideas from the other answers, I was able to wedge the factorial function into a single unnamed lambda:

>>> map(lambda n: (lambda f, *a: f(f, *a))(lambda rec, n: 1 if n == 0 else n*rec(rec, n-1), n), range(10))
[1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880]

So it's possible, but not really recommended!


without reduce, map, named lambdas or python internals:

(lambda a:lambda v:a(a,v))(lambda s,x:1 if x==0 else x*s(s,x-1))(10)

Contrary to what sth said, you CAN directly do this.

(lambda f: (lambda x: f(lambda v: x(x)(v)))(lambda x: f(lambda v: x(x)(v))))(lambda f: (lambda i: 1 if (i == 0) else i * f(i - 1)))(n)

The first part is the fixed-point combinator Y that facilitates recursion in lambda calculus

Y = (lambda f: (lambda x: f(lambda v: x(x)(v)))(lambda x: f(lambda v: x(x)(v))))

the second part is the factorial function fact defined recursively

fact = (lambda f: (lambda i: 1 if (i == 0) else i * f(i - 1)))

Y is applied to fact to form another lambda expression

F = Y(fact)

which is applied to the third part, n, which evaulates to the nth factorial

>>> n = 5
>>> F(n)
120

or equivalently

>>> (lambda f: (lambda x: f(lambda v: x(x)(v)))(lambda x: f(lambda v: x(x)(v))))(lambda f: (lambda i: 1 if (i == 0) else i * f(i - 1)))(5)
120

If however you prefer fibs to facts you can do that too using the same combinator

>>> (lambda f: (lambda x: f(lambda v: x(x)(v)))(lambda x: f(lambda v: x(x)(v))))(lambda f: (lambda i: f(i - 1) + f(i - 2) if i > 1 else 1))(5)
8