Repeat rows in a pandas DataFrame based on column value

reindex+ repeat

df.reindex(df.index.repeat(df.persons))
Out[951]: 
   code  .     role ..1  persons
0   123  .  Janitor   .        3
0   123  .  Janitor   .        3
0   123  .  Janitor   .        3
1   123  .  Analyst   .        2
1   123  .  Analyst   .        2
2   321  .   Vallet   .        2
2   321  .   Vallet   .        2
3   321  .  Auditor   .        5
3   321  .  Auditor   .        5
3   321  .  Auditor   .        5
3   321  .  Auditor   .        5
3   321  .  Auditor   .        5

PS: you can add.reset_index(drop=True) to get the new index


Wen's solution is really nice and intuitive. Here's an alternative, calling repeat on df.values.

df

   code     role  persons
0   123  Janitor        3
1   123  Analyst        2
2   321   Vallet        2
3   321  Auditor        5


pd.DataFrame(df.values.repeat(df.persons, axis=0), columns=df.columns)

   code     role persons
0   123  Janitor       3
1   123  Janitor       3
2   123  Janitor       3
3   123  Analyst       2
4   123  Analyst       2
5   321   Vallet       2
6   321   Vallet       2
7   321  Auditor       5
8   321  Auditor       5
9   321  Auditor       5
10  321  Auditor       5
11  321  Auditor       5