How to import keras from tf.keras in Tensorflow?
Use the keras module from tensorflow like this:
import tensorflow as tf
Import classes
from tensorflow.python.keras.layers import Input, Dense
or use directly
dense = tf.keras.layers.Dense(...)
EDIT Tensorflow 2
from tensorflow.keras.layers import Input, Dense
and the rest stays the same.
Try from tensorflow.python import keras
with this, you can easily change keras dependent code to tensorflow in one line change.
You can also try from tensorflow.contrib import keras
. This works on tensorflow 1.3
Edited: for tensorflow 1.10 and above you can use import tensorflow.keras as keras
to get keras in tensorflow.
Its not quite fine to downgrade everytime, you may need to make following changes as shown below:
Tensorflow
import tensorflow as tf
#Keras
from tensorflow.keras.models import Sequential, Model, load_model, save_model
from tensorflow.keras.callbacks import ModelCheckpoint
from tensorflow.keras.layers import Dense, Activation, Dropout, Input, Masking, TimeDistributed, LSTM, Conv1D, Embedding
from tensorflow.keras.layers import GRU, Bidirectional, BatchNormalization, Reshape
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.layers import Reshape, Dropout, Dense,Multiply, Dot, Concatenate,Embedding
from tensorflow.keras import optimizers
from tensorflow.keras.callbacks import ModelCheckpoint
The point is that instead of using
from keras.layers import Reshape, Dropout, Dense,Multiply, Dot, Concatenate,Embedding
you need to add
from tensorflow.keras.layers import Reshape, Dropout, Dense,Multiply, Dot, Concatenate,Embedding
To make it simple I will take the two versions of the code in keras and tf.keras. The example here is a simple Neural Network Model with different layers in it.
In Keras (v2.1.5)
from keras.models import Sequential
from keras.layers import Dense
def get_model(n_x, n_h1, n_h2):
model = Sequential()
model.add(Dense(n_h1, input_dim=n_x, activation='relu'))
model.add(Dense(n_h2, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(4, activation='softmax'))
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
print(model.summary())
return model
In tf.keras (v1.9)
import tensorflow as tf
def get_model(n_x, n_h1, n_h2):
model = tf.keras.Sequential()
model.add(tf.keras.layers.Dense(n_h1, input_dim=n_x, activation='relu'))
model.add(tf.keras.layers.Dense(n_h2, activation='relu'))
model.add(tf.keras.layers.Dropout(0.5))
model.add(tf.keras.layers.Dense(4, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
print(model.summary())
return model
or it can be imported the following way instead of the above-mentioned way
from tensorflow.keras.layers import Dense
The official documentation of tf.keras
Note: TensorFlow Version is 1.9