Finding connected components in a pixel-array

Considering that the groups should never touch each other, you can use scipy.ndimage.measurements.label to label the groups:

In [1]: import numpy as np

In [2]: from scipy.ndimage.measurements import label

In [3]: array = np.array(...)  # your example

In [4]: structure = np.ones((3, 3), dtype=np.int)  # this defines the connection filter

In [5]: structure  # in this case we allow any kind of connection
Out[5]: 
array([[1, 1, 1],
       [1, 1, 1],
       [1, 1, 1]])

In [6]: labeled, ncomponents = label(array, structure)

In [7]: labeled
Out[7]: 
array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
       [0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
       [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0],
       [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0],
       [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
       [0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
       [0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
       [0, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
       [0, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
       [0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
       [0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
       [0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
       [0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
       [0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
       [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
       [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
       [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
       [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
       [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
       [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=int32)

In [7]: ncomponents
Out[7]: 2

Although I haven't read the particular implementation, SciPy tends to use highly efficient algorithms implemented in C, hence the performance should be relatively high. You can then extract the indices for each group using NumPy:

In [8]: indices = np.indices(array.shape).T[:,:,[1, 0]]

In [9]: indices[labeled == 1]
Out[9]: 
array([[ 1,  6],
       [ 1,  7],
       [ 2,  6],
       [ 2,  7],
       [ 2,  8],
       [ 2,  9],
       [ 2, 10],
       [ 2, 11],
       [ 2, 12],
       [ 2, 13],
       [ 3, 11],
       [ 3, 12],
       [ 3, 13]])

In [10]: indices[labeled == 2]
Out[10]: 
array([[ 5,  1],
       [ 6,  1],
       [ 7,  1],
       [ 7,  2],
       [ 8,  1],
       [ 8,  2],
       [ 9,  2],
       [10,  2],
       [10,  3],
       [11,  2],
       [11,  3],
       [12,  3],
       [13,  3]])