Removing Horizontal Lines in image (OpenCV, Python, Matplotlib)

Solution 1:

Here's an approach

  • Convert image to grayscale

  • Otsu's threshold to get binary image

  • Create special horizontal kernel and morph open to detect horizontal lines

  • Find contours on mask and "fill in" the detected horizontal lines with white to effectively remove horizontal lines

  • Create vertical kernel and repair image with morph close


After converting to grayscale, we Otsu's threshold to obtain a binary image

enter image description here

image = cv2.imread('1.png')
gray = cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)
thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)[1]

Next we create a special horizontal kernel to detect horizontal lines. We draw these lines onto a mask and then find contours on the mask. To remove the lines, we fill in the contours with white

Detected lines

enter image description here

Mask

enter image description here

Filled in contours

enter image description here

# Remove horizontal
horizontal_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (25,1))
detected_lines = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, horizontal_kernel, iterations=2)
cnts = cv2.findContours(detected_lines, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if len(cnts) == 2 else cnts[1]
for c in cnts:
    cv2.drawContours(image, [c], -1, (255,255,255), 2)

The image currently has gaps. To fix this, we construct a vertical kernel to repair the image

enter image description here

# Repair image
repair_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (1,6))
result = 255 - cv2.morphologyEx(255 - image, cv2.MORPH_CLOSE, repair_kernel, iterations=1)

Note depending on the image, the size of the kernel will change. For instance, to detect longer lines, we could use a (50,1) kernel instead. If we wanted thicker lines, we could increase the 2nd parameter to say (50,2).

Here's the results with the other images

Detected lines

Original (left), removed (right)


Detected lines

Original (left), removed (right)

Full code

import cv2

image = cv2.imread('1.png')
gray = cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)
thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)[1]

# Remove horizontal
horizontal_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (25,1))
detected_lines = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, horizontal_kernel, iterations=2)
cnts = cv2.findContours(detected_lines, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if len(cnts) == 2 else cnts[1]
for c in cnts:
    cv2.drawContours(image, [c], -1, (255,255,255), 2)

# Repair image
repair_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (1,6))
result = 255 - cv2.morphologyEx(255 - image, cv2.MORPH_CLOSE, repair_kernel, iterations=1)

cv2.imshow('thresh', thresh)
cv2.imshow('detected_lines', detected_lines)
cv2.imshow('image', image)
cv2.imshow('result', result)
cv2.waitKey()