How do you run your own code alongside Tkinter's event loop?

My little brother is just getting into programming, and for his Science Fair project, he's doing a simulation of a flock of birds in the sky. He's gotten most of his code written, and it works nicely, but the birds need to move every moment.

Tkinter, however, hogs the time for its own event loop, and so his code won't run. Doing root.mainloop() runs, runs, and keeps running, and the only thing it runs is the event handlers.

Is there a way to have his code run alongside the mainloop (without multithreading, it's confusing and this should be kept simple), and if so, what is it?

Right now, he came up with an ugly hack, tying his move() function to <b1-motion>, so that as long as he holds the button down and wiggles the mouse, it works. But there's got to be a better way.


Use the after method on the Tk object:

from tkinter import *

root = Tk()

def task():
    print("hello")
    root.after(2000, task)  # reschedule event in 2 seconds

root.after(2000, task)
root.mainloop()

Here's the declaration and documentation for the after method:

def after(self, ms, func=None, *args):
    """Call function once after given time.

    MS specifies the time in milliseconds. FUNC gives the
    function which shall be called. Additional parameters
    are given as parameters to the function call.  Return
    identifier to cancel scheduling with after_cancel."""

The solution posted by Bjorn results in a "RuntimeError: Calling Tcl from different appartment" message on my computer (RedHat Enterprise 5, python 2.6.1). Bjorn might not have gotten this message, since, according to one place I checked, mishandling threading with Tkinter is unpredictable and platform-dependent.

The problem seems to be that app.start() counts as a reference to Tk, since app contains Tk elements. I fixed this by replacing app.start() with a self.start() inside __init__. I also made it so that all Tk references are either inside the function that calls mainloop() or are inside functions that are called by the function that calls mainloop() (this is apparently critical to avoid the "different apartment" error).

Finally, I added a protocol handler with a callback, since without this the program exits with an error when the Tk window is closed by the user.

The revised code is as follows:

# Run tkinter code in another thread

import tkinter as tk
import threading

class App(threading.Thread):

    def __init__(self):
        threading.Thread.__init__(self)
        self.start()

    def callback(self):
        self.root.quit()

    def run(self):
        self.root = tk.Tk()
        self.root.protocol("WM_DELETE_WINDOW", self.callback)

        label = tk.Label(self.root, text="Hello World")
        label.pack()

        self.root.mainloop()


app = App()
print('Now we can continue running code while mainloop runs!')

for i in range(100000):
    print(i)

When writing your own loop, as in the simulation (I assume), you need to call the update function which does what the mainloop does: updates the window with your changes, but you do it in your loop.

def task():
   # do something
   root.update()

while 1:
   task()  

Another option is to let tkinter execute on a separate thread. One way of doing it is like this:

import Tkinter
import threading

class MyTkApp(threading.Thread):
    def __init__(self):
        self.root=Tkinter.Tk()
        self.s = Tkinter.StringVar()
        self.s.set('Foo')
        l = Tkinter.Label(self.root,textvariable=self.s)
        l.pack()
        threading.Thread.__init__(self)

    def run(self):
        self.root.mainloop()


app = MyTkApp()
app.start()

# Now the app should be running and the value shown on the label
# can be changed by changing the member variable s.
# Like this:
# app.s.set('Bar')

Be careful though, multithreaded programming is hard and it is really easy to shoot your self in the foot. For example you have to be careful when you change member variables of the sample class above so you don't interrupt with the event loop of Tkinter.


This is the first working version of what will be a GPS reader and data presenter. tkinter is a very fragile thing with way too few error messages. It does not put stuff up and does not tell why much of the time. Very difficult coming from a good WYSIWYG form developer. Anyway, this runs a small routine 10 times a second and presents the information on a form. Took a while to make it happen. When I tried a timer value of 0, the form never came up. My head now hurts! 10 or more times per second is good enough for me. I hope it helps someone else. Mike Morrow

import tkinter as tk
import time

def GetDateTime():
  # Get current date and time in ISO8601
  # https://en.wikipedia.org/wiki/ISO_8601 
  # https://xkcd.com/1179/
  return (time.strftime("%Y%m%d", time.gmtime()),
          time.strftime("%H%M%S", time.gmtime()),
          time.strftime("%Y%m%d", time.localtime()),
          time.strftime("%H%M%S", time.localtime()))

class Application(tk.Frame):

  def __init__(self, master):

    fontsize = 12
    textwidth = 9

    tk.Frame.__init__(self, master)
    self.pack()

    tk.Label(self, font=('Helvetica', fontsize), bg = '#be004e', fg = 'white', width = textwidth,
             text='Local Time').grid(row=0, column=0)
    self.LocalDate = tk.StringVar()
    self.LocalDate.set('waiting...')
    tk.Label(self, font=('Helvetica', fontsize), bg = '#be004e', fg = 'white', width = textwidth,
             textvariable=self.LocalDate).grid(row=0, column=1)

    tk.Label(self, font=('Helvetica', fontsize), bg = '#be004e', fg = 'white', width = textwidth,
             text='Local Date').grid(row=1, column=0)
    self.LocalTime = tk.StringVar()
    self.LocalTime.set('waiting...')
    tk.Label(self, font=('Helvetica', fontsize), bg = '#be004e', fg = 'white', width = textwidth,
             textvariable=self.LocalTime).grid(row=1, column=1)

    tk.Label(self, font=('Helvetica', fontsize), bg = '#40CCC0', fg = 'white', width = textwidth,
             text='GMT Time').grid(row=2, column=0)
    self.nowGdate = tk.StringVar()
    self.nowGdate.set('waiting...')
    tk.Label(self, font=('Helvetica', fontsize), bg = '#40CCC0', fg = 'white', width = textwidth,
             textvariable=self.nowGdate).grid(row=2, column=1)

    tk.Label(self, font=('Helvetica', fontsize), bg = '#40CCC0', fg = 'white', width = textwidth,
             text='GMT Date').grid(row=3, column=0)
    self.nowGtime = tk.StringVar()
    self.nowGtime.set('waiting...')
    tk.Label(self, font=('Helvetica', fontsize), bg = '#40CCC0', fg = 'white', width = textwidth,
             textvariable=self.nowGtime).grid(row=3, column=1)

    tk.Button(self, text='Exit', width = 10, bg = '#FF8080', command=root.destroy).grid(row=4, columnspan=2)

    self.gettime()
  pass

  def gettime(self):
    gdt, gtm, ldt, ltm = GetDateTime()
    gdt = gdt[0:4] + '/' + gdt[4:6] + '/' + gdt[6:8]
    gtm = gtm[0:2] + ':' + gtm[2:4] + ':' + gtm[4:6] + ' Z'  
    ldt = ldt[0:4] + '/' + ldt[4:6] + '/' + ldt[6:8]
    ltm = ltm[0:2] + ':' + ltm[2:4] + ':' + ltm[4:6]  
    self.nowGtime.set(gdt)
    self.nowGdate.set(gtm)
    self.LocalTime.set(ldt)
    self.LocalDate.set(ltm)

    self.after(100, self.gettime)
   #print (ltm)  # Prove it is running this and the external code, too.
  pass

root = tk.Tk()
root.wm_title('Temp Converter')
app = Application(master=root)

w = 200 # width for the Tk root
h = 125 # height for the Tk root

# get display screen width and height
ws = root.winfo_screenwidth()  # width of the screen
hs = root.winfo_screenheight() # height of the screen

# calculate x and y coordinates for positioning the Tk root window

#centered
#x = (ws/2) - (w/2)
#y = (hs/2) - (h/2)

#right bottom corner (misfires in Win10 putting it too low. OK in Ubuntu)
x = ws - w
y = hs - h - 35  # -35 fixes it, more or less, for Win10

#set the dimensions of the screen and where it is placed
root.geometry('%dx%d+%d+%d' % (w, h, x, y))

root.mainloop()