Counting unique values in a column in pandas dataframe like in Qlik?

Solution 1:

Count distinct values, use nunique:

df['hID'].nunique()
5

Count only non-null values, use count:

df['hID'].count()
8

Count total values including null values, use the size attribute:

df['hID'].size
8

Edit to add condition

Use boolean indexing:

df.loc[df['mID']=='A','hID'].agg(['nunique','count','size'])

OR using query:

df.query('mID == "A"')['hID'].agg(['nunique','count','size'])

Output:

nunique    5
count      5
size       5
Name: hID, dtype: int64

Solution 2:

If I assume data is the name of your dataframe, you can do :

data['race'].value_counts()

this will show you the distinct element and their number of occurence.

Solution 3:

Or get the number of unique values for each column:

df.nunique()

dID    3
hID    5
mID    3
uID    5
dtype: int64

New in pandas 0.20.0 pd.DataFrame.agg

df.agg(['count', 'size', 'nunique'])

         dID  hID  mID  uID
count      8    8    8    8
size       8    8    8    8
nunique    3    5    3    5

You've always been able to do an agg within a groupby. I used stack at the end because I like the presentation better.

df.groupby('mID').agg(['count', 'size', 'nunique']).stack()


             dID  hID  uID
mID                       
A   count      5    5    5
    size       5    5    5
    nunique    3    5    5
B   count      2    2    2
    size       2    2    2
    nunique    2    2    2
C   count      1    1    1
    size       1    1    1
    nunique    1    1    1

Solution 4:

You can use nunique in pandas:

df.hID.nunique()
# 5

Solution 5:

To count unique values in column, say hID of dataframe df, use:

len(df.hID.unique())