Store numpy.array in cells of a Pandas.DataFrame
Solution 1:
Use a wrapper around the numpy array i.e. pass the numpy array as list
a = np.array([5, 6, 7, 8])
df = pd.DataFrame({"a": [a]})
Output:
a 0 [5, 6, 7, 8]
Or you can use apply(np.array)
by creating the tuples i.e. if you have a dataframe
df = pd.DataFrame({'id': [1, 2, 3, 4],
'a': ['on', 'on', 'off', 'off'],
'b': ['on', 'off', 'on', 'off']})
df['new'] = df.apply(lambda r: tuple(r), axis=1).apply(np.array)
Output :
a b id new 0 on on 1 [on, on, 1] 1 on off 2 [on, off, 2] 2 off on 3 [off, on, 3] 3 off off 4 [off, off, 4]
df['new'][0]
Output :
array(['on', 'on', '1'], dtype='<U2')
Solution 2:
If you first set a column to have type object
, you can insert an array without any wrapping:
df = pd.DataFrame(columns=[1])
df[1] = df[1].astype(object)
df.loc[1, 1] = np.array([5, 6, 7, 8])
df
Output:
1
1 [5, 6, 7, 8]