docker container does not need an OS, but each container has one. Why?
Solution 1:
Docker "containers" are not virtual machines; they are just regular processes running on the host system (and thus always on the host's Linux kernel) with some special configuration to partition them off from the rest of the system.
You can see this for yourself by starting a process in a container and doing a ps
outside the container; you'll see that process in the host's list of all processes. Running ps
in the containerized process, however, will show only processes in that container; limiting the view of processes on the system is one of the facilities that containerization provides.
The container is also usually given a limited or separate view of many other system resources, such as files, network interfaces and users. In particular, containerized processes are often given a completely different root filesystem and set of users, making it look almost as if it's running on a separate machine. (But it's not; it still shares the host's CPU, memory, I/O bandwidth and, most importantly, Linux kernel of the host.)
To answer your specific questions:
On CentOS (or any other system), all containers you create are using the host's kernel. There is no way to create a container that uses a different kernel; you need to start a virtual machine for that.
The image is just files on disk; these files are "loaded into memory" in the same way any files are. So no, for any particular disk block of a file in a shared parent image there will never be more than one copy of that disk block in memory at once. However, each container has its own private "transparent" filesystem layer above the base image layer that is used to handle writes, so if you change a file the changed blocks will be stored there, and will now be separate from the underlying image that that other processes (who have not changed any blocks in that file) see.
In Linux you can try
man cgroups
andman cgroup_namespaces
to get some fairly technical details about the cgroup mechanism, which is what Docker (and any other containerization scheme on Linux) uses to limit and change what a containerized process sees. I don't have any other particular suggestions on readings directly related to this, but I think it might help to learn the technical details of how processes and various other systems work on Unix and POSIX systems in general, because understanding that gives you the background to understand what kinds of things containerization does. Perhaps start with learning about the chroot(2) system call and programming with it a bit (or even playing around with the chroot(8) program); that would give you a practical hands-on example of how one particular area of containerization.
Follow-up questions:
There is no kernel version matching; only the one host kernel is ever used. If the program in the container doesn't work on that version of that kernel, you're simply out of luck. For example, try runing the Docker official
centos:6
orcentos:5
container on a Linux system with a 4.19 or later kernel, and you'll see that/bin/bash
segfaults when you try to start it. The kernel and userland program are not compatible. If the program tries to use newer facilities that are not in the kernel, it will similarly fail. This is no different from running the same binaries (program and shared libraries!) outside of a container.Windows and Macintosh systems can't run Linux containers directly, since they're not Linux kernels with the appropriate facilities to run even Linux programs, much less supporting the same extra cgroup facilities. So when you install Docker on these, generally it installs a Linux VM on which to run the containers. Almost invariably it will install only a single VM and run all containers in that one VM; to do otherwise would be a waste of resources for no benefit. (Actually, there could be benefit in being able to have several different kernel versions, as mentioned above.)
Solution 2:
Docker does not has an OS in its containers. In simple terms, a docker container image just has a kind of filesystem snapshot of the linux-image the container image is dependent on.
The container-image includes some basic programs like bash-shell, vim-editor etc to facilitate developer to work easily with the docker image. Also, docker images can include pre-installed dependencies like nodeJS, redis-server etc as we can find on docker hub.
Docker behind the scene uses the host OS which is linux itself to run its containers. The programs included in linux-like filesystem snapshot that we see in form of docker containers actually runs on the host OS in isolation.
The container-images may sound like different linux distros but they are the filesystem snapshot of those distros. All Linux distributions are based on the same kernel. They differ in the programs, tools and dependencies that they ships with.
Also take note of this comment [click]. It is very much relevant to this question.
Hope this helps.
Solution 3:
It's now long time since I posted this question, but it seems, like it still get hits... So I decided to answer it - in fact mainly the question, which is in the title (the questions in the text are carefully answered by Curt J. Sampson).
So, the discussion of the "main" question: if containers are not VMs, then why do we need VMs for them?
As you may guess, I am working on windows (on Linux this question would not emerge, because on Linux one does not need VMs for docker).
The reason, why we need a VM for containers in Winodows is pretty obvious (probably this is the reason, why nobody mentions it explicitly). As was already mentioned here and it many other FAQs, containers reuse kernel and some other resources of the hosting OS. Taking into account, that most of the containers available out there are based on Linux, one may conclude, that those containers need host OS to provide Linux kernel for them to run. Which is not natively easy on Windows (I am not sure, may be it is now possible with Linux subsystem). This is why on Windows we need one VM, which runs Linux and docker service inside this VM. And then, when we start the containers, they are also started inside this VM (and reuse the resources of its Linux OS). All the containers run inside the same VM. Getting a bit more technical: by default docker uses Hyper-V to run this linux VM, but one can also use Docker-Toolbox, which uses Oracle VirtualBox. By the way, VM can be freely seen in the Virtual Box interface. Nice part is that Docker (or Docker toolbox) takes care about managing this VM and we don't need to care about it.
Now some bonus question, which that time confused me even more. One may think: "Ok, it is clear now. If we run Linux container on Winodws OS, then we need Linux kernel and thus need VM with Linux. But if we run Windows container on Windows (by the way, it exists), then VM should not be needed, right?..." Answer: "wrong" (or almost wrong). :) The problem is, that the Windows based containers (at least those, which I saw) use windows server kernel, which is not available e.g. in Windows 10. Thus one still need VM with special version of Windows Server running on it. In fact MS even created special version of Windows Server, which can be run on VM for development purposes free of charge specifically to enable development of Windows-Server based containers. If my understanding is correct, those containers should be possible to run without VM on Windows Server. I should admit, that I never checked it though.
I hope, that this messy explanation may help someone to better understand the topic.
Solution 4:
We need a VM to run a docker on the host machine ( this is achieved through the docker toolbox) if it is windows, on Linux we don't even need this. Once we have a docker toolbox container in itself doesn't need a VM, each container has a baseline image which is very minimal and reuses a lot of stuff with the host kernel hence making it lightweight compared to VM. You can run many such container using single host kernel.