Best way to make Java's modulus behave like it should with negative numbers?
It behaves as it should a % b = a - a / b * b; i.e. it's the remainder.
You can do (a % b + b) % b
This expression works as the result of (a % b)
is necessarily lower than b
, no matter if a
is positive or negative. Adding b
takes care of the negative values of a
, since (a % b)
is a negative value between -b
and 0
, (a % b + b)
is necessarily lower than b
and positive. The last modulo is there in case a
was positive to begin with, since if a
is positive (a % b + b)
would become larger than b
. Therefore, (a % b + b) % b
turns it into smaller than b
again (and doesn't affect negative a
values).
As of Java 8, you can use Math.floorMod(int x, int y) and Math.floorMod(long x, long y). Both of these methods return the same results as Peter's answer.
Math.floorMod( 2, 3) = 2
Math.floorMod(-2, 3) = 1
Math.floorMod( 2, -3) = -1
Math.floorMod(-2, -3) = -2
For those not using (or not able to use) Java 8 yet, Guava came to the rescue with IntMath.mod(), available since Guava 11.0.
IntMath.mod( 2, 3) = 2
IntMath.mod(-2, 3) = 1
One caveat: unlike Java 8's Math.floorMod(), the divisor (the second parameter) cannot be negative.
In number theory, the result is always positive. I would guess that this is not always the case in computer languages because not all programmers are mathematicians. My two cents, I would consider it a design defect of the language, but you can't change it now.
=MOD(-4,180) = 176 =MOD(176, 180) = 176
because 180 * (-1) + 176 = -4 the same as 180 * 0 + 176 = 176
Using the clock example here, http://mathworld.wolfram.com/Congruence.html you would not say duration_of_time mod cycle_length is -45 minutes, you would say 15 minutes, even though both answers satisfy the base equation.